Adversarial Linear Contextual Bandits with Graph-Structured Side Observations

Lingda Wang

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

35th AAAI Conference on Artificial Intelligence (AAAI 2021)

February 2nd - 9th, 2021

Joint work with Bingcong Li (UMN), Huozhi Zhou (UIUC), Georgios B. Giannakis (UMN), Lav R. Varshney (UIUC), and Zhizhen Zhao (UIUC)

・ロト ・ 同ト ・ ヨト ・ ヨト

Lingda Wang (UIUC)

Motivation

- Viral marketing over a social network:
 - The Agent offers a survey with a promotion to a user;
 - The user finishes the survey and share it in the social network;
 - The agent gets side observations from followers.

Linear Contextual Bandits with Side Observations

- In each time step $t = 1, 2, \ldots, T$:
 - Adversary picks the feedback graph G_t , and loss vectors $\{\theta_{i,t} \in \mathbb{R}^d\}_{i=1}^K$;
 - Environment reveals the context $X_t \in \mathbb{R}^d$, $X_t \sim \mathcal{D}$;
 - The learning agent chooses action $I_t \in [K]$;
 - The agent incurs and observes loss $\ell_t(X_t, I_t) = \langle X_t, \theta_{I_t, t} \rangle \in [-1, 1];$
 - The agent also observes losses of I_t 's neighbors in G_t ;
 - The adversary discloses G_t to the agent.

ヘロン 人間 とくほ とくほとし ほ

Linear Contextual Bandits with Side Observations

- In each time step $t = 1, 2, \ldots, T$:
 - Adversary picks the feedback graph G_t , and loss vectors $\{\theta_{i,t} \in \mathbb{R}^d\}_{i=1}^K$;
 - Environment reveals the context $X_t \in \mathbb{R}^d$, $X_t \sim \mathcal{D}$;
 - The learning agent chooses action $I_t \in [K]$;
 - The agent incurs and observes loss $\ell_t(X_t, I_t) = \langle X_t, \theta_{I_t, t} \rangle \in [-1, 1];$
 - The agent also observes losses of I_t 's neighbors in G_t ;
 - The adversary discloses G_t to the agent.
- Goal: Minimize the regret:

$$\mathcal{R}_{\mathcal{T}} = \max_{\pi_{\mathcal{T}} \in \Pi} \mathbb{E} \left[\sum_{t=1}^{\mathcal{T}} \left\langle X_t, \theta_{l_t, t} - \theta_{\pi_{\mathcal{T}}(X_t), t} \right\rangle \right],$$

against the best policy $\pi_T \in \Pi := \{\pi_T | \text{all policies } \pi_T : \mathbb{R}^d \mapsto V \}.$

Existing Results on Contextual Bandits

	Regret	
	i.i.d. context	adversarial context
i.i.d. loss ¹	$\mathcal{O}(\sqrt{dKT})$	$\mathcal{O}(\sqrt{dKT})$
adversarial loss	see below	$\Theta(T)$

- For adversarial loss and i.i.d context:
 - BISTRO++²: $\mathcal{O}(T^{2/3}(K \log N)^{1/2})$, oracle-efficient;
 - RobustLinEXP3³: $\mathcal{O}(T^{2/3}(Kd\log K)^{1/3});$
 - RealLinEXP3³: $\mathcal{O}(\sqrt{dKT \log K \log T})$.

¹ Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011). Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312-2320.

²Rakhlin, A. and Sridharan, K. (2016). BISTRO: An efficient relaxation-based method for contextual bandits. In International Conference on Machine Learning, pages 1977-1985.

³Neu, G. and Olkhovskaya, J. (2020). Efficient and robust algorithms for adversarial linear contextual bandits. In Conference on Learning Theory, pages 1-20.

Existing Results on Contextual Bandits

	Regret	
	i.i.d. context	adversarial context
i.i.d. loss ¹	$\mathcal{O}(\sqrt{dKT})$	$\mathcal{O}(\sqrt{dKT})$
adversarial loss	see below	$\Theta(T)$

• Question: Is it possible to do better with side observations?

¹Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011). Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312-2320.

Existing Results on Contextual Bandits

	Regret	
	i.i.d. context	adversarial context
i.i.d. loss ¹	$\mathcal{O}(\sqrt{dKT})$	$\mathcal{O}(\sqrt{dKT})$
adversarial loss	see below	$\Theta(T)$

• Question: Is it possible to do better with side observations?

• Answer: Yes!

¹Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011). Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312-2320.

Contributions

- A new bandit model: jointly leverages contexts and side observations.
- Introducing two new algorithms, EXP3-LGC-U and EXP3-LGC-IX, with:
 - Novel loss vector estimates design;
 - Better dependence on K (# of actions).

• Promising numerical performance.

・ 同 ト ・ ヨ ト ・ ヨ ト

Assumptions

• **I.i.d contexts**: The context $X_t \in \mathbb{R}^d$ is drawn from a distribution \mathcal{D} i.i.d., where \mathcal{D} is known by the agent in advance.

< □ > < 同 > < 回 > < 回 > < 回 >

Assumptions

• **I.i.d contexts**: The context $X_t \in \mathbb{R}^d$ is drawn from a distribution \mathcal{D} i.i.d., where \mathcal{D} is known by the agent in advance.

• Extra observation oracle: At each time step t, there exists an oracle that draws a context $\tilde{X}_t \in \mathbb{R}^d$ from \mathcal{D} , and discloses \tilde{X}_t together with the losses $\tilde{l}_t(\tilde{X}_t, i)$ to the agent.

Assumptions

• **I.i.d contexts**: The context $X_t \in \mathbb{R}^d$ is drawn from a distribution \mathcal{D} i.i.d., where \mathcal{D} is known by the agent in advance.

• Extra observation oracle: At each time step t, there exists an oracle that draws a context $\tilde{X}_t \in \mathbb{R}^d$ from \mathcal{D} , and discloses \tilde{X}_t together with the losses $\tilde{l}_t(\tilde{X}_t, i)$ to the agent.

• Nonoblivious adversary: The adversary can be nonoblivious, who is allowed to choose G_t and $\theta_{i,t}, \forall i \in V$ at time t according to arbitrary functions of the interaction history \mathcal{F}_{t-1} before time step t.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lingda Wang (UIUC)

• Main steps in each time step t:

э

イロト イボト イヨト イヨト

- Main steps in each time step t:
 - Compute the exponential weight:

$$w_t(X_t, i) = \exp\left(-\eta \sum_{s=1}^{t-1} \left\langle X_t, \hat{\theta}_{i,s} \right\rangle\right);$$

- 4 回 ト 4 三 ト 4 三 ト

- Main steps in each time step t:
 - Compute the exponential weight:

$$w_t(X_t, i) = \exp\left(-\eta \sum_{s=1}^{t-1} \left\langle X_t, \hat{\theta}_{i,s} \right\rangle\right);$$

• Draw the action $I_t \in [K]$ with probability:

$$\pi_t^a(i|X_t) = (1-\gamma) \frac{w_t(X_t,i)}{\sum_{j \in V} w_t(X_t,j)} + \frac{\gamma}{K};$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- Main steps in each time step t:
 - Compute the exponential weight:

$$w_t(X_t, i) = \exp\left(-\eta \sum_{s=1}^{t-1} \left\langle X_t, \hat{\theta}_{i,s} \right\rangle\right);$$

• Draw the action $I_t \in [K]$ with probability:

$$\pi_t^a(i|X_t) = (1-\gamma) \frac{w_t(X_t,i)}{\sum_{j \in V} w_t(X_t,j)} + \frac{\gamma}{K};$$

• Estimate the loss vector $\theta_{i,t}$:

$$\hat{\theta}_{i,t} = \frac{\mathbb{I}\{i \in S_{l_t,t}\}}{q_t(i|X_t)} \Sigma^{-1} \tilde{X}_t \tilde{\ell}_t(\tilde{X}_t, i),$$

where
$$q_t(i|X_t) = \pi_t^a(i|X_t) + \sum_{j:j \to i} \pi_t^a(j|X_t).$$

Lingda Wang (UIUC)

Properties of $\hat{\theta}_{i,t}$

- Advantages and properties of $\hat{\theta}_{i,t}$:
 - The estimate is unbiased w.r.t. \mathcal{F}_{t-1} and X_t :

$$\mathbb{E}\left[\hat{\theta}_{i,t} | X_t, \mathcal{F}_{t-1}\right] = \theta_{i,t};$$

3

イロン イヨン イヨン

Properties of $\hat{\theta}_{i,t}$

- Advantages and properties of $\hat{\theta}_{i,t}$:
 - The estimate is unbiased w.r.t. \mathcal{F}_{t-1} and X_t :

$$\mathbb{E}\left[\hat{\theta}_{i,t} | X_t, \mathcal{F}_{t-1}\right] = \theta_{i,t};$$

• Regret can be evaluated using $\hat{\theta}_{i,t}$ directly:

$$\mathcal{R}_{\mathcal{T}} = \max_{\pi_{\mathcal{T}} \in \Pi} \mathbb{E} \left[\sum_{t=1}^{T} \sum_{i \in V} \left(\pi_t^{a}(i|X_t) - \pi_{\mathcal{T}}(i|X_t) \right) \left\langle X_t, \hat{\theta}_{i,t} \right\rangle \right].$$

イロト 不得 トイヨト イヨト

Main Results I

Theorem

For any positive $\eta \in (0, 1)$, choosing $\gamma = \eta K \sigma^2 / \lambda_{min}$, the expected cumulative regret of EXP3-LGC-U satisfies:

$$\mathcal{R}_{t} \leq \frac{\log K}{\eta} + \frac{2\eta K \sigma^{2}}{\lambda_{\min}} T + \eta d \sum_{t=1}^{T} \mathbb{E}\left[Q_{t}\right],$$

where $Q_t = \alpha(G_t)$ if G_t is undirected, and $Q_t = 4\alpha(G_t) \log(4K^2/(\alpha(G_t)\gamma))$ if G_t is directed.

Corollary

The regret of EXP3-LGC-U is $\mathcal{O}(\sqrt{(K + \alpha(G)d)T \log K})$ in the undirected graph setting, and $\mathcal{O}(\sqrt{(K + \alpha(G)d)T} \log(KdT))$ in the directed graph setting, where $\alpha(G) \leq K$ is the averaged independence number of $\{G_t\}$.

イロト イポト イヨト イヨト

Proof Sketch of EXP3-LGC-U

• Analyze log
$$\frac{W_{t+1}(X_t)}{W_t(X_t)}$$
, where $W_t(x) = \sum_{i \in V} w_t(x, i)$:

$$\begin{split} &\sum_{t=1}^{T} \mathbb{E}\left[\sum_{i \in V} \frac{\pi_t^{a}(i|X_t)}{1-\gamma} \left(-\eta \left\langle X_t, \hat{\theta}_{i,t} \right\rangle + \eta^2 \left\langle X_t, \hat{\theta}_{i,t} \right\rangle^2\right) + \frac{\eta\gamma}{\mathcal{K}(1-\gamma)} \sum_{i \in V} \left\langle X_t, \hat{\theta}_{i,t} \right\rangle\right] \\ &\leq \mathbb{E}\left[\sum_{t=1}^{T} \log \frac{W_{t+1}(X_t)}{W_t(X_t)}\right] \leq \mathbb{E}\left[-\eta \sum_{t=1}^{T} \sum_{i \in V} \pi_T(i|X_t) \left\langle X_t, \hat{\theta}_{i,t} \right\rangle - \log \mathcal{K}\right]. \end{split}$$

3

イロト イヨト イヨト イヨト

Proof Sketch of EXP3-LGC-U

• Analyze log
$$\frac{W_{t+1}(X_t)}{W_t(X_t)}$$
, where $W_t(x) = \sum_{i \in V} w_t(x, i)$:

$$\begin{split} &\sum_{t=1}^{T} \mathbb{E}\left[\sum_{i \in V} \frac{\pi_t^a(i|X_t)}{1-\gamma} \left(-\eta \left\langle X_t, \hat{\theta}_{i,t} \right\rangle + \eta^2 \left\langle X_t, \hat{\theta}_{i,t} \right\rangle^2 \right) + \frac{\eta\gamma}{\mathcal{K}(1-\gamma)} \sum_{i \in V} \left\langle X_t, \hat{\theta}_{i,t} \right\rangle \right] \\ &\leq \mathbb{E}\left[\sum_{t=1}^{T} \log \frac{W_{t+1}(X_t)}{W_t(X_t)}\right] \leq \mathbb{E}\left[-\eta \sum_{t=1}^{T} \sum_{i \in V} \pi_T(i|X_t) \left\langle X_t, \hat{\theta}_{i,t} \right\rangle - \log \mathcal{K}\right]. \end{split}$$

• Reorder the terms on both sides and apply some straightforward facts:

$$\mathcal{R}_{T} \leq \frac{\log K}{\eta} + 2\gamma T + \eta \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i \in V} \pi_{t}^{a}(i|X_{t}) \left\langle X_{t}, \hat{\theta}_{i,t} \right\rangle^{2}\right].$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proof Sketch of EXP3-LGC-U

• Analyze
$$\log \frac{W_{t+1}(X_t)}{W_t(X_t)}$$
, where $W_t(x) = \sum_{i \in V} w_t(x, i)$:

$$\begin{split} &\sum_{t=1}^{T} \mathbb{E}\left[\sum_{i \in V} \frac{\pi_t^{\vartheta}(i|X_t)}{1-\gamma} \left(-\eta \left\langle X_t, \hat{\theta}_{i,t} \right\rangle + \eta^2 \left\langle X_t, \hat{\theta}_{i,t} \right\rangle^2 \right) + \frac{\eta\gamma}{\mathcal{K}(1-\gamma)} \sum_{i \in V} \left\langle X_t, \hat{\theta}_{i,t} \right\rangle \right] \\ &\leq \mathbb{E}\left[\sum_{t=1}^{T} \log \frac{W_{t+1}(X_t)}{W_t(X_t)}\right] \leq \mathbb{E}\left[-\eta \sum_{t=1}^{T} \sum_{i \in V} \pi_T(i|X_t) \left\langle X_t, \hat{\theta}_{i,t} \right\rangle - \log \mathcal{K}\right]. \end{split}$$

• Reorder the terms on both sides and apply some straightforward facts:

$$\mathcal{R}_{\mathcal{T}} \leq \frac{\log K}{\eta} + 2\gamma \mathcal{T} + \eta \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i \in V} \pi_{t}^{a}(i|X_{t}) \left\langle X_{t}, \hat{\theta}_{i,t} \right\rangle^{2}\right]_{A}.$$

• Use graph-theoretic results form Alon et al. and properties of $\hat{\theta}_{i,t}$ to bound term A.

• Additional assumption: The support of $\theta_{i,t}$ and X_t is non-negative, and elements of X_t are independent.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Additional assumption: The support of $\theta_{i,t}$ and X_t is non-negative, and elements of X_t are independent.
- Main steps in each time step t:

<日

<</p>

- Additional assumption: The support of θ_{i,t} and X_t is non-negative, and elements of X_t are independent.
- Main steps in each time step t:
 - Draw the action $I_t \in [K]$ proportional to the exponential weight:

$$\pi_t^a(i|X_t) \propto w_t(X_t, i) = \frac{1}{\kappa} \exp\left(-\eta_t \sum_{s=1}^{t-1} \left\langle X_t, \hat{\theta}_{i,s} \right\rangle\right);$$

- Additional assumption: The support of θ_{i,t} and X_t is non-negative, and elements of X_t are independent.
- Main steps in each time step t:
 - Draw the action $I_t \in [K]$ proportional to the exponential weight:

$$\pi_t^a(i|X_t) \propto w_t(X_t, i) = \frac{1}{K} \exp\left(-\eta_t \sum_{s=1}^{t-1} \left\langle X_t, \hat{\theta}_{i,s} \right\rangle\right);$$

• Estimate the loss vector $\theta_{i,t}$:

$$\hat{\theta}_{i,t} = \frac{\mathbb{I}\{i \in S_{l_t,t}\}}{q_t(i|X_t) + \beta_t} \Sigma^{-1} \tilde{X}_t \tilde{\ell}_t(\tilde{X}_t, i).$$

Property of $\hat{\theta}_{i,t}$

Claim

The loss vector estimate $\hat{\theta}_{i,t}$ in EXP3-LGC-IX is optimistic:

$$\mathbb{E}_{t}\left[\sum_{i\in V} \pi_{t}^{a}(i|X_{t})\left\langle X_{t}, \hat{\theta}_{i,t}\right\rangle \middle| X_{t}\right]$$
$$= \sum_{i\in V} \pi_{t}^{a}(i|X_{t})\left\langle X_{t}, \theta_{i,t}\right\rangle - \beta_{t} \sum_{i\in V} \frac{\pi_{t}^{a}(i|X_{t})}{q_{t}(i|X_{t}) + \beta_{t}}\left\langle X_{t}, \theta_{i,t}\right\rangle,$$

where

$$0 \leq \sum_{i \in V} \frac{\pi_t^a(i|X_t)}{q_t(i|X_t) + \beta_t} \langle X_t, \theta_{i,t} \rangle \leq \sum_{i \in V} \frac{\pi_t^a(i|X_t)}{q_t(i|X_t) + \beta_t}$$

- Control the variance of loss vector estimates.
- Regret can be evaluated using $\hat{\theta}_{i,t}$ directly.

・ロト ・四ト ・ヨト ・ヨト

Main Results II

Theorem

Setting
$$\beta_t = \sqrt{\log K / (K + \sum_{s=1}^{t-1} Q_s)}$$
 and $\eta_t = \sqrt{\log K / (dK + d \sum_{s=1}^{t-1} Q_s)}$, the expected regret of EXP3-LGC-IX satisfies:

$$\mathcal{R}_{\mathcal{T}} \leq 2(1+\sqrt{d})\mathbb{E}\left[\sqrt{\left(\mathcal{K}+\sum_{t=1}^{\mathcal{T}} \mathcal{Q}_t
ight)\log\mathcal{K}}
ight]$$

for both directed and undirected graph settings, where $Q_t = 2\alpha(G_t) \log \left(1 + \frac{\lceil K^2/\beta_t \rceil + K}{\alpha(G_t)}\right) + 2.$

Corollary

The regret of EXP3-LGC-IX is $\mathcal{O}(\sqrt{\alpha(G)dT}\log K\log(KT))$ for both directed and undirected graph settings.

Proof Sketch of EXP3-LGC-IX

• Analyze log
$$\frac{W'_{t+1}(X_t)}{W_t(X_t)}$$
, where $W_t(x) = \sum_{i \in V} w_t(x, i)$ and $W'_t(x) = \sum_{i \in V} \frac{1}{K} \exp(-\eta_{t-1} \sum_{s=1}^{t-1} \langle x, \hat{\theta}_{i,s} \rangle)$:

$$-\mathbb{E}\left[\frac{\log K}{\eta_{T+1}}\right] - \mathbb{E}\left[\sum_{t=1}^{T} \left\langle X_{t}, \hat{\theta}_{\pi_{T}}(X_{t}), t \right\rangle\right] \leq \mathbb{E}\left[\sum_{t=1}^{T} \left(\frac{\log W_{t+1}(X_{t})}{\eta_{t+1}} - \frac{\log W_{t}(X_{t})}{\eta_{t}}\right)\right]$$
$$\leq \mathbb{E}\left[\sum_{t=1}^{T} \frac{1}{\eta_{t}} \log \frac{W_{t+1}'(X_{t})}{W_{t}(X_{t})}\right] \leq \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i \in V} \pi_{t}^{a}(i|X_{t}) \left(-\left\langle X_{t}, \hat{\theta}_{i,t} \right\rangle + \frac{1}{2}\eta_{t} \left\langle X_{t}, \hat{\theta}_{i,t} \right\rangle^{2}\right)\right].$$

2

イロン イ理 とく ヨン イ ヨン

Proof Sketch of EXP3-LGC-IX

• Analyze log
$$\frac{W'_{t+1}(X_t)}{W_t(X_t)}$$
, where $W_t(x) = \sum_{i \in V} w_t(x, i)$ and $W'_t(x) = \sum_{i \in V} \frac{1}{K} \exp(-\eta_{t-1} \sum_{s=1}^{t-1} \langle x, \hat{\theta}_{i,s} \rangle)$:

$$-\mathbb{E}\left[\frac{\log K}{\eta_{T+1}}\right] - \mathbb{E}\left[\sum_{t=1}^{T} \left\langle X_t, \hat{\theta}_{\pi_T}(X_t), t \right\rangle\right] \le \mathbb{E}\left[\sum_{t=1}^{T} \left(\frac{\log W_{t+1}(X_t)}{\eta_{t+1}} - \frac{\log W_t(X_t)}{\eta_t}\right)\right]$$
$$\le \mathbb{E}\left[\sum_{t=1}^{T} \frac{1}{\eta_t} \log \frac{W_{t+1}'(X_t)}{W_t(X_t)}\right] \le \underbrace{\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i \in V} \pi_t^a(i|X_t) \left(-\left\langle X_t, \hat{\theta}_{i,t} \right\rangle + \frac{1}{2}\eta_t \left\langle X_t, \hat{\theta}_{i,t} \right\rangle^2\right)\right]}_{B}.$$

• Bound term B using properties of $\hat{\theta}_{i,t}$ and graph-theoretic result from *Kocák et al.*.

Proof Sketch of EXP3-LGC-IX

• Analyze log
$$\frac{W'_{t+1}(X_t)}{W_t(X_t)}$$
, where $W_t(x) = \sum_{i \in V} w_t(x, i)$ and $W'_t(x) = \sum_{i \in V} \frac{1}{K} \exp(-\eta_{t-1} \sum_{s=1}^{t-1} \langle x, \hat{\theta}_{i,s} \rangle)$:

$$-\mathbb{E}\left[\frac{\log K}{\eta_{T+1}}\right] - \mathbb{E}\left[\sum_{t=1}^{T} \left\langle X_t, \hat{\theta}_{\pi_T}(X_t), t \right\rangle\right] \le \mathbb{E}\left[\sum_{t=1}^{T} \left(\frac{\log W_{t+1}(X_t)}{\eta_{t+1}} - \frac{\log W_t(X_t)}{\eta_t}\right)\right]$$
$$\le \mathbb{E}\left[\sum_{t=1}^{T} \frac{1}{\eta_t} \log \frac{W_{t+1}'(X_t)}{W_t(X_t)}\right] \le \underbrace{\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i \in V} \pi_t^a(i|X_t) \left(-\left\langle X_t, \hat{\theta}_{i,t} \right\rangle + \frac{1}{2}\eta_t \left\langle X_t, \hat{\theta}_{i,t} \right\rangle^2\right)\right]}_{B}.$$

- Bound term B using properties of $\hat{\theta}_{i,t}$ and graph-theoretic result from *Kocák et al.*.
- Reorder the terms on both sides:

$$\mathcal{R}_{\mathcal{T}} \leq 2(1+\sqrt{d})\mathbb{E}\left[\sqrt{\left(\mathcal{K}+\sum_{t=1}^{T}Q_{t}
ight)\log\mathcal{K}}
ight].$$

・ロン ・四 と ・ 回 と ・ 日 と

	Regret		
	Unsdirected Setting	Directed Setting	
EXP3-LGC-U	$\mathcal{O}(\sqrt{(K+\alpha(G)d)T\log K})$	$\mathcal{O}(\sqrt{(K + \alpha(G)d)T}\log(KdT))$	
EXP3-LGC-IX	$\mathcal{O}(\sqrt{\alpha(G)dT}\log K\log(KT))$		
RobustLinEXP3 ²	$O(T^{2/3}(Kd\log K)^{1/3})$		
RealLinEXP3 ²	$\mathcal{O}(\sqrt{dKT}\log K\log T)$		

²Neu, G. and Olkhovskaya, J. (2020). Efficient and robust algorithms for adversarial linear contextual bandits. In Conference on Learning Theory, pages 1 - 20.

Numerical Results

• Experiment settings:

- K = 10, d = 10, and $T = 10^5$;
- *X_t*(*j*) ∼ Bern(0.5)/*sqrt*(*d*);
- $\theta_{i,t}(j) = 0.1i |\cos t| / (\sqrt{d} \lceil t/50000 \rceil).$

3

・ロト ・四ト ・ヨト ・ヨト

Thank You!

• Full version of Adversarial Linear Contextual Bandits with Graph-Structured Side Observations is available online at: https://arxiv.org/abs/2012.05756.

<日

<</p>