

Virtual Conference, Feb 2021

Enhancing Parameter-Free Frank Wolfe with an Extra Subproblem

Bingcong Li,* Lingda Wang,\# Georgios B. Giannakis,* and Zhizhen Zhao\#
*University of Minnesota, Twin Cities
\#University of Illinois at Urbana-Champaign

Acknowledgement: NSF 1711471, 1901134, and Alfred P. Sloan Foundation

Context and motivation

- Frank-Wolfe (conditional gradient) method
- Invented by to M. Frank and P. Wolfe in 1956
- Constrained convex optimization (this talk)
- Low iteration complexity, sparse-promoting

- Applications

video colocation [Joulin et al '14]

image reconstruction [Harchaoui et al '15]

EV charging [Zhang \& GG '18]

optimal transport [Luise et al '19]

Contributions in a nutshell

- Faster FW without problem-dependent parameters
- Impossible in general: FW is lower-bound-matching
- ExtraFW converges faster on certain constraints
- with simple step size $\mathcal{O}\left(\frac{1}{k}\right)$
- Promising numerical performance

\square Preliminaries
\square Algorithm design and analysis
\square Numerical experiments

Problem statement

- Objective and constraint

$$
\min _{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})
$$

Assumption 1. (Lipschitz Continuous Grad.) $\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|_{*} \leq L\|\mathbf{x}-\mathbf{y}\|$
Assumption 2. (Convex Objective Function.) $f(\mathbf{y})-f(\mathbf{x}) \geq\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle$
Assumption 3. (Convex and Compact Constraint.) $\|\mathbf{x}-\mathbf{y}\| \leq D, \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$
\square Goal: solve this problem with neither projection nor L

- FW variants eliminate projection
- L estimate is usually too pessimistic
- L related step sizes do not perform that well empirically

FW recap

- FW's geometry and convergence

From $k=0$, iteratively update via

$$
\begin{aligned}
& \mathbf{v}_{k+1}=\underset{\mathbf{x} \in \mathcal{X}}{\arg \min }\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}\right\rangle \\
& \mathbf{x}_{k+1}=\left(1-\delta_{k}\right) \mathbf{x}_{k}+\delta_{k} \mathbf{v}_{k+1}
\end{aligned}
$$

- Geometry: $\quad \mathbf{v}_{k+1}=\underset{\mathbf{x} \in \mathcal{X}}{\arg \min } f\left(\mathbf{x}_{k}\right)+\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}-\mathbf{x}_{k}\right\rangle$
- Convergence: $f\left(\mathrm{x}_{k}\right)-f\left(\mathrm{x}^{*}\right)=\mathcal{O}\left(\frac{L D^{2}}{k}\right)$
\checkmark Parameter-free step size $\delta_{k}=\frac{2}{k+2}$
\checkmark Smooth step size $\delta_{k}=\min \left\{\frac{\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k}-\mathbf{v}_{k+1}\right\rangle}{L\left\|\mathbf{v}_{k+1}-\mathbf{x}_{k}\right\|^{2}}, 1\right\}$
\checkmark Line search (function evaluation needed)

Faster FW (variants)

- Smooth step sizes / line search
- FW [Levitin \& Polyak 1966]: active and strongly convex \mathcal{X}
- FW [Garber \& Hazan '15]: strongly convex f, strongly convex \mathcal{X}
- Away-steps [L.-Julien \& Jaggi '15]: strongly convex f, polytope \mathcal{X}

- Parameter-free step sizes
- Challenges: $f\left(\mathbf{x}_{k+1}\right) \leq f\left(\mathbf{x}_{k}\right)$ is not guaranteed using this step size
- FW [Bach '20]: twice differentiable f, polytope \mathcal{X}
- AFW [Li et al '20]: replacing NAG subproblem with a FW subproblem
- Other faster FW variants
- CGS [Lan \& Zhou, '16]: replacing NAG subproblem with CGS
- Relies on both L and D
\square Preliminaries

Algorithm design and analysis
\square Numerical experiments

ExtraFW: update via prediction - correction

From $k=0$, iteratively update via
$\mathbf{y}_{k}=\left(1-\delta_{k}\right) \mathbf{x}_{k}+\delta_{k} \mathbf{v}_{k}$
$\hat{\mathbf{g}}_{k+1}=\left(1-\delta_{k}\right) \mathbf{g}_{k}+\delta_{k} \nabla f\left(\mathbf{y}_{k}\right)$
$\hat{\mathbf{v}}_{k+1}=\underset{\mathbf{v} \in \mathcal{X}}{\arg \min }\left\langle\hat{\mathbf{g}}_{k+1}, \mathbf{v}\right\rangle$
$\mathbf{x}_{k+1}=\left(1-\delta_{k}\right) \mathbf{x}_{k}+\delta_{k} \hat{\mathbf{v}}_{k+1}$
$\mathbf{g}_{k+1}=\left(1-\delta_{k}\right) \mathbf{g}_{k}+\delta_{k} \nabla f\left(\mathbf{x}_{k+1}\right)$
$\mathbf{v}_{k+1}=\arg \min \left\langle\mathbf{g}_{k+1}, \mathbf{v}\right\rangle$

- Lower bound prediction $\hat{\mathbf{g}}_{k+1}=\sum_{\tau=0}^{k-1} w_{k}^{\tau} \nabla f\left(\mathbf{x}_{\tau+1}\right)+\delta_{k} \nabla f\left(\mathbf{y}_{k}\right)$ $\hat{\mathbf{v}}_{k+1}=\operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \sum_{\tau=0}^{k-1} w_{k}^{\tau}\left[f\left(\mathbf{x}_{\tau+1}\right)+\left\langle\nabla f\left(\mathbf{x}_{\tau+1}\right), \mathbf{x}-\mathbf{x}_{\tau+1}\right\rangle\right]+\delta_{k}\left[f\left(\mathbf{y}_{k}\right)+\left\langle\nabla f\left(\mathbf{y}_{k}\right), \mathbf{x}-\mathbf{y}_{k}\right\rangle\right]$
- Lower bound correction $\quad \mathbf{g}_{k+1}=\sum_{\tau=0}^{k-1} w_{k}^{\tau} \nabla f\left(\mathbf{x}_{\tau+1}\right)+\delta_{k} \nabla f\left(\mathbf{x}_{k+1}\right)$

$$
\mathbf{v}_{k+1}=\operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \sum_{\tau=0}^{k-1} w_{k}^{\tau}\left[f\left(\mathbf{x}_{\tau+1}\right)+\left\langle\nabla f\left(\mathbf{x}_{\tau+1}\right), \mathbf{x}-\mathbf{x}_{\tau+1}\right\rangle\right]+\delta_{k}\left[f\left(\mathbf{x}_{k+1}\right)+\left\langle\nabla f\left(\mathbf{x}_{k+1}\right), \mathbf{x}-\mathbf{x}_{k+1}\right\rangle\right]
$$

Convergence of ExtraFW

- For general problems with

Theorem: Let $\mathbf{g}_{0}=\mathbf{0}$ and $\delta_{k}=\frac{2}{k+3}$, then ExtraFW guarantees that

$$
f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}^{*}\right)=\mathcal{O}\left(\frac{L D^{2}}{k}\right)
$$

- What prevents a faster rate?

Difficulties to bound $\left\|\mathbf{v}_{k}-\hat{\mathbf{v}}_{k}\right\|^{2}$ due to non-uniqueness of \mathbf{v}_{k}

- Faster rates on active norm ball constraints

Assumption 4. The constraint is active

- Common in machine learning problems

$$
\min _{\mathbf{x}} f(\mathbf{x}) \text { s.t. } g(\mathbf{x}) \leq R \quad \Leftrightarrow \quad \min _{\mathbf{x}} f(\mathbf{x})+\gamma g(\mathbf{x})
$$

- Closed-form solution of \mathbf{v}_{k} makes small $\left\|\mathbf{v}_{k}-\hat{\mathbf{v}}_{k}\right\|^{2}$ possible

Acceleration of ExtraFW

constraint	ExtraFW	AFW		
$\\|\mathbf{x}\\|_{2} \leq R$	$\mathcal{O}\left(\min \left\{\frac{L D^{2}}{k}, \frac{L D^{2} T}{k^{2}}\right\}\right)$	$\mathcal{O}\left(\min \left\{\frac{L D^{2}}{k}, \frac{L D^{2} T \ln k}{k^{2}}\right\}\right)$		
$\\|\mathbf{x}\\|_{1} \leq R$	$\mathcal{O}\left(\min \left\{\frac{L D^{2}}{k}, \frac{L D^{2} T}{k^{2}}\right\}\right)$	$\mathcal{O}\left(\min \left\{\frac{L D^{2}}{k}, \frac{L D^{2} T}{k^{2}}\right\}\right)$		
$\\|\mathbf{x}\\|_{\mathrm{n}-\mathrm{sp}} \leq R$	$\mathcal{O}\left(\min \left\{\frac{L D^{2}}{k}, \frac{L D^{2} T}{k^{2}}\right\}\right)$	$\mathcal{O}\left(\min \left\{\frac{L D^{2}}{k}, \frac{L D^{2} T \ln k}{k^{2}}\right\}\right)$		

- Local acceleration: after T iterations, the bound is improved over FW
- Remarks
- Implementation is the same regardless of acceleration
- Merits of PC update: improved k dependence over AFW
- Not too many algorithms achieve (local) acceleration without relying on L
- Extendable to Frobenius and the nuclear norm ball constraints
\square Preliminaries

Algorithm design and analysis
\square Numerical experiments

Binary classification

$$
f(\mathbf{x})=\frac{1}{N} \sum_{i=1}^{N} \ln \left(1+\exp \left(-b_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right)\right) \quad \mathcal{X}=\left\{\mathbf{x}\|\mathbf{x}\|_{2} \leq R\right\}
$$

Binary classification

$$
f(\mathbf{x})=\frac{1}{N} \sum_{i=1}^{N} \ln \left(1+\exp \left(-b_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right)\right) \quad \mathcal{X}=\left\{\mathbf{x} \mid\|\mathbf{x}\|_{1} \leq R\right\}
$$

Binary classification

$$
f(\mathbf{x})=\frac{1}{N} \sum_{i=1}^{N} \ln \left(1+\exp \left(-b_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right)\right) \quad \mathcal{X}=\operatorname{conv}\left\{\mathbf{x} \mid\|\mathbf{x}\|_{0} \leq n,\|\mathbf{x}\|_{2} \leq R\right\}
$$

Matrix completion

$$
f(\mathbf{X})=\frac{1}{2} \sum_{(i, j) \in \mathcal{K}}\left(X_{i j}-A_{i j}\right)^{2}
$$

$$
\mathcal{X}=\left\{\mathbf{X} \mid\|\mathbf{X}\|_{\text {nuc }} \leq R\right\}
$$

Concluding remarks

- We talked about ExtraFW

- for faster convergence using parameter-free step sizes
- with promising performance for classification and matrix completion
- Future directions
- More constraint-dependent accelerated rates
- How about an adaptive manner for a local L ?
- Check out our paper \#1351
https://arxiv.org/abs/2012.05284

