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Motivation

Cascading bandit (CB) is a variant of multi-armed bandit (MAB)
tailored for cascade model (CM) that depicts a user’s online behavior.
CB can be characterized by L different attraction distributions {fi}Li=1

associated with items (e.g., web pages and ads).

Goal of CB: Identifying the K most attractive items to the user and
maximizing the number of clicks during the Learning process.

What if the attraction distributions are non-stationary (e.g. User’s
preference might change)?
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Learning Protocol of Cascading Bandits

CB = (L, T , {f`,t}`∈L,t≤T ,K ):

L: Ground set containing L items (e.g., web pages or ads);

{f`,t}`∈L,t≤T : Pmfs of attraction distributions of items in L;

T is the time horizon, and K is the number of items recommended by
the learner to the user.

In each time step t = 1, 2, . . . ,T :

Given historical data, the learner selects a K -item ranked list
At := (a1,t , . . . , aK ,t) ∈ ΠK (L) to recommend to the user;

The learner observes the feedback from the user at time t:

Ft =

{
∅, if no click,

arg mink{1 ≤ k ≤ K : Zak,t ,t = 1}, otherwise,

which indicates the first item clicked by the user (Zak,t ,t) or no click (∅).
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Piecewise-Stationary Cascading Bandits: Problem
Formulation

Consider Piecewise-Stationary CB (PS-CB) with N segments, where
N = 1 +

∑T−1
t=1 I{∃` ∈ L s.t. f`,t 6= f`,t+1}.

For the ith piecewise-stationary segment t ∈ [νi−1 + 1, νi ], the
attraction distribution of item `, denoted as f i` , remains unchanged.

Goal: Minimize the expected cumulative regret:

R(T ) = E

[
T∑
t=1

R (At ,wt ,Zt)

]
,

where wt is attraction probability vector. Here, R(At ,wt ,Zt) =
r(A∗t ,wt)− r(At ,Zt) with A∗t = arg maxAt∈ΠK (L) r (At ,wt) being
the optimal list that maximizes the expected reward, where
r (At ,wt) = 1−

∏K
k=1

(
1− wak,t ,t

)
.
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Contributions

Tighter regret bounds. The proposed two algorithms are shown to
have regret bounds O(

√
NLT logT ), which tightens those in Li et

al. 1 by a factor of
√
L and

√
L logT , respectively.

Matching lower bound. We establish that the minimax regret lower
bound for PS-CB is Ω(

√
NLT ). Such a lower bound: i) implies the

proposed algorithms are optimal up to a logarithm factor; ii) is the
first to characterize dependence on N, L, and T for PS-CB.

Better numerical peformance. Numerical experiments on a
real-world benchmark dataset reveal the merits of proposed
algorithms over state-of-the-art approaches.

1
Chang Li and Maarten de Rijke, “Cascading non-stationary bandits: Online learning to rank in the non-stationary cascade

model,” in Proc. 28th Int. Joint Conf. Artif. Intell. (IJCAI 2019), 2019, pp. 2859–2865.
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The Proposed Algorithms

GLRT-CascadeUCB and GLRT-CascadeKL-UCB algorithms run in
three phases:

For p fraction of the time, the algorithms select K items by uniform
sampling. For the rest of the time, the algorithms select K items with
highest UCB/KL-UCB indices;

Update the statistics of K selected items:

UCB(`) = ŵ(`) +

√
3 log(t − τ)

2n`
,

UCBKL(`) = max{q ∈ [ŵ(`), 1] : n` × KL(ŵ(`), q) ≤ g(t − τ)};

At the end of each round, run GLRT change-point detector 2 on
selected items at this round. If at least one item’s click probability has
changed, restart the UCB indices/KL-UCB indices of all items.

2
Lilian Besson and Emilie Kaufmann, “The generalized likelihood ratio test meets klucb: an improved algorithm for

piecewise non-stationary bandits,” arXiv preprintarXiv:1902.01575, 2019.
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Theoretical Analysis: Regret Upper Bounds

Theorem (Wang et al. 2019, GLRT-CascadeUCB)

Under mild assumptions, GLRT-CascadeUCB guarantees

R(T ) ≤
N∑
i=1

C̃i + Tp +
N−1∑
i=1

di + 3NTLδ,

where C̃i =
∑L

`=K+1
12

∆i
si (`),si (K)

logT + π2

3 L.

Corollary (Wang et al. 2019, GLRT-CascadeUCB)

The regret of GLRT-CascadeUCB is established by choosing δ = 1/T and
p =

√
NL logT/T :

R(T ) = O

N(L− K ) logT

∆min
opt

+

√
NLT logT(
∆min

change

)2

 .
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Theoretical Analysis: Regret Upper Bounds

Theorem (Wang et al. 2019, GLRT-CascadeKL-UCB)

Under mild assumptions, GLRT-CascadeKL-UCB guarantees

R(T ) ≤ T (N − 1)(L + 1)δ + Tp

+
N−1∑
i=1

di + NK log logT +
N−1∑
i=0

D̃i ,

where D̃i is a term depending on logT and the suboptimal gaps.

Corollary (Wang et al. 2019, GLRT-CascadeKL-UCB)

Choosing the same δ and p as GLRT-CascadeUCB, GLRT-CascadeKL-UCB
has the same regret as GLRT-CascadeUCB.

As T becomes larger, the regret is dominated by the cost of the
change-point detection component, implying the regret is
O(
√
NLT logT ).
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Theoretical Analysis: Regret Lower Bound

Theorem (Wang et al. 2019, Lower Bound)

If L ≥ 3 and T ≥ MN (L−1)2

L , then for any policy, the worst-case regret is

at least Ω(
√
NLT ), where M = 1/ log 4

3 , and Ω(·) notation hides a
constant factor that is independent of N, L, and T .

This lower bound is the first characterization involving N, L, and T .
And it indicates our proposed algorithms are nearly order-optimal
within a logarithm factor

√
logT .

Lingda Wang (UIUC) Piecewise-Stationary Cascading Bandits 9 / 12



Summary

Regret Diff

Lower Bound O(
√
NLT ) 0

CascadeDUCB3 O(L
√
NT logT ) O(

√
L logT )

CascadeSWUCB3 O(L
√
NT logT ) O(

√
L logT )

GLRT-CascadeUCB O
(√

NLT logT
)
O(
√

logT )

GLRT-CascadeKL-UCB O
(√

NLT logT
)
O(
√

logT )

3
Chang Li and Maarten de Rijke, “Cascading non-stationary bandits: Online learning to rank in the non-stationary cascade

model,” in Proc. 28th Int. Joint Conf. Artif. Intell. (IJCAI 2019), 2019, pp. 2859–2865.
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Numerical Results
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(a) Click rate.
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Experiment settings:

Use the Yahoo! benchmark dataset4;

Pre-process the dataset by adopting the same method as Cao et al. 5,
where L = 6, K = 2, N = 9, and T = 90000.

4
https://webscope.sandbox.yahoo.com

5
Yang Cao, Zheng Wen, Branislav Kveton, and Yao Xie, “Nearly optimal adaptive procedure with change detection for

piecewise-stationary bandit,” in Proc. 22nd Int. Conf. Artif. Intell. Stat. (AISTATS 2019), 2019, pp. 418–427.
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Thank You!

Full version of Nearly Optimal Algorithms for Piecewise-Stationary
Cascading Bandits is available online at:
https://arxiv.org/abs/1909.05886.
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