Two-Dimensional Tomography from Noisy Projection Tilt Series Taken at Unknown View Angles with Non-Uniform Distribution

Lingda Wang

Department of Electrical and Computer Engineering
Coordinated Science Laboratory University of Illinois at Urbana-Champaign

The 26th IEEE International Conference on Image Processing (ICIP 2019)
September $23^{\text {rd }} 2019$

Joint work with Zhizhen Zhao

Motivation \& Intro: A Statistical Estimation Problem

- Unknown 2-D object f, and unknown non-uniform view angle distribution $\mathbf{p}(\theta)$.
- Observation model: $\mathbf{y}_{i, \kappa}=\mathcal{P}_{\theta_{i}+\kappa \alpha}(f)+\mathbf{n}_{i, \kappa}, \forall i \in[N],|\kappa| \leq K$.
- Parameters of interest: f and $\mathbf{p}(\theta)$.

Related Works and Problems

- Existing methods focus on estimating view angles.
- S. Basu and Y. Bresler ${ }^{1}$:
- View angle ordering via nearest neighbor;
- Joint maximum likelihood refinement.
- A. Singer and H. Wu^{2} :
- Denoising (e.g., linear Wiener filtering and graph denoising);
- Diffusion maps for view angle ordering.
- Cons: Poor performance under low SNR; Computationally inefficient with large number of projections.

[^0]
Related Works and Problems

- Existing methods focus on estimating view angles.
- S. Basu and Y. Bresler ${ }^{1}$:
- View angle ordering via nearest neighbor;
- Joint maximum likelihood refinement.
- A. Singer and H. Wu ${ }^{2}$:
- Denoising (e.g., linear Wiener filtering and graph denoising);
- Diffusion maps for view angle ordering.
- Cons: Poor performance under low SNR; Computationally inefficient with large number of projections.
- Related problems:
- 1-D: Multi-segment reconstruction (MSR).
- 3-D: Sub-tomogram averaging (STA) in cryo-ET and single-particle reconstruction (SPR) in cryo-EM.

[^1]
Proposed Method

- Method of Moments (MoM):
- Conjecture: first and second order moments may contain sufficient information for the recovery.
- Difficulty: algorithm by directly inverting the first and second order moments is unavailable with unknown non-uniform view angle distribution $\mathbf{p}(\theta)$.
- Solution: use nonconvex optimization methods to solve constrained weighted nonlinear least squares of first and second order moments.

Proposed Method

- Method of Moments (MoM):
- Conjecture: first and second order moments may contain sufficient information for the recovery.
- Difficulty: algorithm by directly inverting the first and second order moments is unavailable with unknown non-uniform view angle distribution $\mathbf{p}(\theta)$.
- Solution: use nonconvex optimization methods to solve constrained weighted nonlinear least squares of first and second order moments.
- Pros: lower computational complexity. (N : \# of data)
- MoM: $\mathcal{O}(N)$ for moments (once) and $\mathcal{O}(1)$ for each iteration.
- MLE (e.g., EM): $\mathcal{O}(N)$ for each iteration.

Moment Features

- Fourier domain: $\mathcal{F}(f)(\xi, \theta) \approx \sum_{k=-k_{\max }}^{k_{\max }} \sum_{q=1}^{q_{k}} a_{k, q} \psi_{c}^{k, q}(\xi, \theta)$.
- Fourier slice theorem: $\widehat{\mathbf{y}}_{i, \kappa}\left[\xi_{j}\right]=\mathcal{F}(f)\left(\xi_{j}, \theta_{i}+\kappa \alpha\right)+\widehat{\mathbf{n}}_{i, \kappa}\left[\xi_{j}\right]$.
- First order moment:

$$
\begin{aligned}
\boldsymbol{\mu}[j ; \kappa] & =\sum_{k=-k_{\max }}^{k_{\max }} \sum_{q=1}^{q_{k}} \sum_{l=0}^{n_{\theta}-1} a_{k, q} \psi_{c}^{k, q}\left(\xi_{j}, \phi_{I}+\kappa \alpha\right) \mathbf{p}[/] \\
& =\boldsymbol{\Psi}(\mathbf{a} \circ \mathbf{g}(\widehat{\mathbf{p}}))[j ; \kappa] .
\end{aligned}
$$

- Second order moment:

$$
\begin{aligned}
\mathbf{C}\left[j_{1} ; \kappa_{1}, j_{2} ; \kappa_{2}\right]= & \sum_{k_{1}=-k_{\max }}^{k_{\max }} \sum_{k_{2}=-k_{\max }}^{k_{\max }} \sum_{q_{1}=1}^{q_{k_{1}}} \sum_{q_{2}=1}^{q_{k_{2}}} a_{k_{1}, q_{1}} \overline{a_{k_{2}, q_{2}}} \\
& \times \psi_{c}^{k_{1}, q_{1}}\left(\xi_{j_{1}}, \kappa_{1} \alpha\right) \psi_{c}^{k_{2}, q_{2}}\left(\xi_{j_{2}}, \kappa_{2} \alpha\right) \widehat{\mathbf{p}}\left[k_{2}-k_{1}\right] \\
= & \left(\boldsymbol{\Psi}\left(\mathbf{a a}^{*} \circ \mathbf{H}(\widehat{\mathbf{p}})\right) \boldsymbol{\Psi}^{*}\right)\left[j_{1} ; \kappa_{1}, j_{2} ; \kappa_{2}\right] .
\end{aligned}
$$

Moment Features

- Unbiased empirical estimators:

$$
\widetilde{\boldsymbol{\mu}}=\frac{1}{N} \sum_{i=1}^{N} \widehat{\mathbf{y}}_{i}, \quad \widetilde{\mathbf{C}}=\frac{1}{N} \sum_{i=1}^{N} \widehat{\mathbf{y}}_{i} \widehat{\mathbf{y}}_{i}^{*}-\widehat{\boldsymbol{\Sigma}}
$$

- Constrained weighted nonlinear least squares:

$$
\begin{aligned}
&(\widetilde{\mathbf{a}}, \widetilde{\mathbf{p}})=\underset{\mathbf{a}, \mathbf{p}}{\arg \min } \begin{array}{l}
\frac{\lambda_{1}}{2}\|\boldsymbol{\Psi}(\mathbf{a} \circ \mathbf{g}(\widehat{\mathbf{p}}))-\widetilde{\boldsymbol{\mu}}\|_{W}^{2} \\
\\
\text { s.t. } \quad \mathbf{p}
\end{array} \frac{\lambda_{2}}{2}\left\|\boldsymbol{\Psi}\left(\mathbf{a a}^{*} \circ \mathbf{H}(\widehat{\mathbf{p}})\right) \boldsymbol{\Psi}^{*}-\widetilde{\mathbf{C}}\right\|_{W}^{2} \\
& \text { and } \quad \mathbf{1}^{\top} \mathbf{p}=1 .
\end{aligned}
$$

- Gradient based methods (e.g., gradient descent and trust region) do not work well.

An Alternating Direction Method of Multiplier (ADMM) Approach

- Reformulation and relaxation: split a into a and z, and relax the positive constraint on \mathbf{p}.

$$
\begin{aligned}
&(\widetilde{\mathbf{a}}, \widetilde{\mathbf{p}})=\underset{\mathbf{a}, \mathbf{p}}{\arg \min }\left.\begin{array}{l}
\frac{\lambda_{1}}{2}\|\boldsymbol{\Psi}(\mathbf{a} \circ \mathbf{g}(\widehat{\mathbf{p}}))-\widetilde{\boldsymbol{\mu}}\|_{W}^{2} \\
\\
\\
\text { s.t. } \quad \mathbf{p}
\end{array}\right) \quad \frac{\lambda_{2}}{2}\left\|\boldsymbol{\Psi}\left(\mathbf{a a}^{*} \circ \mathbf{H}(\widehat{\mathbf{p}})\right) \boldsymbol{\Psi}^{*}-\widetilde{\mathbf{C}}\right\|_{W}^{2}, \\
& \text { and } \quad \mathbf{1}^{\top} \mathbf{p}=1 .
\end{aligned}
$$

An Alternating Direction Method of Multiplier (ADMM) Approach

- Reformulation and relaxation: split a into a and z, and relax the positive constraint on \mathbf{p}.

$$
\begin{aligned}
(\widetilde{\mathbf{a}}, \widetilde{\mathbf{z}}, \widetilde{\mathbf{p}})=\underset{\mathbf{a}, z, \mathbf{p}}{\arg \min } & \begin{array}{l}
\frac{\lambda_{1}}{2}\|\boldsymbol{\Psi}(\mathbf{a} \circ \mathbf{g}(\widehat{\mathbf{p}}))-\widetilde{\boldsymbol{\mu}}\|_{W}^{2}+\frac{\lambda_{1}}{2}\|\boldsymbol{\Psi}(\mathbf{z} \circ \mathbf{g}(\widehat{\mathbf{p}}))-\widetilde{\boldsymbol{\mu}}\|_{W}^{2} \\
\\
\\
\text { s.t. } \quad \mathbf{a}=\mathbf{z}, \quad \mathbf{p} \geq \mathbf{0} \quad \text { and } \quad \mathbf{1}^{\top} \mathbf{p}=1 .
\end{array}
\end{aligned}
$$

An Alternating Direction Method of Multiplier (ADMM) Approach

- Reformulation and relaxation: split a into a and z, and relax the positive constraint on \mathbf{p}.

$$
\begin{aligned}
& (\widetilde{\mathbf{a}}, \widetilde{\mathbf{z}}, \widetilde{\mathbf{p}})=\arg \min ^{\frac{\lambda_{1}}{2}\|\boldsymbol{\Psi}(\mathbf{a} \circ \mathbf{g}(\widehat{\mathbf{p}}))-\widetilde{\boldsymbol{\mu}}\|_{W}^{2}+\frac{\lambda_{1}}{2}\|\boldsymbol{\Psi}(z \circ \mathbf{g}(\widehat{\mathbf{p}}))-\widetilde{\boldsymbol{\mu}}\|_{W}^{2} .} \\
& \underset{\mathbf{a}, \mathrm{z}, \mathbf{p}}{ }+\frac{\lambda_{2}}{2}\left\|\boldsymbol{\Psi}\left(\mathbf{a} z^{*} \circ \mathbf{H}(\widehat{\mathbf{p}})\right) \boldsymbol{\Psi}^{*}-\widetilde{\mathbf{C}}\right\|_{W}^{2} \\
& \text { s.t. } \quad \mathbf{a}=\mathbf{z}, \quad \mathbf{p} \geq \mathbf{0} \quad \text { and } \mathbf{1}^{\top} \mathbf{p}=1 \text {. }
\end{aligned}
$$

An Alternating Direction Method of Multiplier (ADMM)

 Approach- Reformulation and relaxation: split a into a and z, and relax the positive constraint on \mathbf{p}.

$$
\begin{aligned}
&(\widetilde{\mathbf{a}}, \widetilde{\mathbf{z}}, \widetilde{\mathbf{p}})=\underset{\mathbf{a}, z, \mathbf{p}}{\arg \min } \frac{\lambda_{1}}{2}\|\boldsymbol{\Psi}(\mathbf{a} \circ \mathbf{g}(\widehat{\mathbf{p}}))-\widetilde{\boldsymbol{\mu}}\|_{W}^{2}+\frac{\lambda_{1}}{2}\|\boldsymbol{\Psi}(\mathbf{z} \circ \mathbf{g}(\widehat{\mathbf{p}}))-\widetilde{\boldsymbol{\mu}}\|_{W}^{2} \\
&+\frac{\lambda_{2}}{2}\left\|\boldsymbol{\Psi}(\mathbf{a z} \circ \mathbf{H}(\widehat{\mathbf{p}})) \boldsymbol{\Psi}^{*}-\widetilde{\mathbf{C}}\right\|_{W}^{2} \\
& \text { s.t. } \quad \mathbf{a}=\mathbf{z}, \quad \mathbf{p} \geq \mathbf{Q} \quad \text { and } \quad \mathbf{1}^{\top} \mathbf{p}=1 .
\end{aligned}
$$

- Augmented Lagrangian:

$$
\begin{aligned}
& \mathcal{L}(\mathbf{a}, \mathbf{z}, \mathbf{p} ; \mathbf{s})=\frac{\lambda_{1}}{2}\|\boldsymbol{\Psi}(\mathbf{a} \circ \mathbf{g}(\widehat{\mathbf{p}}))-\widetilde{\boldsymbol{\mu}}\|_{W}^{2}+\frac{\lambda_{1}}{2} \| \boldsymbol{\Psi}(\mathbf{z} \circ \mathbf{g}(\widehat{\mathbf{p}})) \\
& -\widetilde{\boldsymbol{\mu}}\left\|_{W}^{2}+\frac{\lambda_{2}}{2}\right\| \boldsymbol{\Psi}\left(\mathbf{a z} \mathbf{z}^{*} \circ \mathbf{H}(\widehat{\mathbf{p}})\right) \boldsymbol{\Psi}^{*}-\widetilde{\mathbf{C}}\left\|_{W}^{2}+\frac{\rho}{2}\right\| \mathbf{a}-\mathbf{z}+\mathbf{s} \|_{2}^{2} .
\end{aligned}
$$

An ADMM Approach

- Initialization: random initialization of $\mathbf{a}^{(0)}, \mathbf{z}^{(0)}, \mathbf{p}^{(0)}$, and $\mathbf{s}^{(0)}=\mathbf{0}$.

An ADMM Approach

- Initialization: random initialization of $\mathbf{a}^{(0)}, \mathbf{z}^{(0)}, \mathbf{p}^{(0)}$, and $\mathbf{s}^{(0)}=\mathbf{0}$.
- Iterations: alternate between the primal updates of variables \mathbf{a}, \mathbf{z}, and \mathbf{p}, and the dual update for \mathbf{s} until convergence.

An ADMM Approach

- Initialization: random initialization of $\mathbf{a}^{(0)}, \mathbf{z}^{(0)}, \mathbf{p}^{(0)}$, and $\mathbf{s}^{(0)}=\mathbf{0}$.
- Iterations: alternate between the primal updates of variables \mathbf{a}, \mathbf{z}, and \mathbf{p}, and the dual update for \mathbf{s} until convergence.

$$
\mathbf{a}^{(t+1)}=\arg \min _{\mathbf{a}} \mathcal{L}\left(\mathbf{a}, \mathbf{z}^{(t)}, \mathbf{p}^{(t)} ; \mathbf{s}^{(t)}\right)
$$

An ADMM Approach

- Initialization: random initialization of $\mathbf{a}^{(0)}, \mathbf{z}^{(0)}, \mathbf{p}^{(0)}$, and $\mathbf{s}^{(0)}=\mathbf{0}$.
- Iterations: alternate between the primal updates of variables \mathbf{a}, \mathbf{z}, and \mathbf{p}, and the dual update for \mathbf{s} until convergence.

$$
\begin{aligned}
& \text { - } \mathbf{a}^{(t+1)}=\arg \min _{\mathbf{a}} \mathcal{L}\left(\mathbf{a}, \mathbf{z}^{(t)}, \mathbf{p}^{(t)} ; \mathbf{s}^{(t)}\right) \\
& \text { - } \mathbf{z}^{(t+1)}=\arg \min _{\mathbf{z}} \mathcal{L}\left(\mathbf{a}^{(t+1)}, \mathbf{z}, \mathbf{p}^{(t)} ; \mathbf{s}^{(t)}\right)
\end{aligned}
$$

An ADMM Approach

- Initialization: random initialization of $\mathbf{a}^{(0)}, \mathbf{z}^{(0)}, \mathbf{p}^{(0)}$, and $\mathbf{s}^{(0)}=\mathbf{0}$.
- Iterations: alternate between the primal updates of variables \mathbf{a}, \mathbf{z}, and \mathbf{p}, and the dual update for \mathbf{s} until convergence.

$$
\begin{aligned}
& \mathbf{a}^{(t+1)}=\arg \min _{\mathbf{a}} \mathcal{L}\left(\mathbf{a}, \mathbf{z}^{(t)}, \mathbf{p}^{(t)} ; \mathbf{s}^{(t)}\right) \\
& \text { - } \mathbf{z}^{(t+1)}=\arg \min _{\mathbf{z}} \mathcal{L}\left(\mathbf{a}^{(t+1)}, \mathbf{z}, \mathbf{p}^{(t)} ; \mathbf{s}^{(t)}\right) \\
& \mathbf{p}^{(t+1)}=\arg \min _{\mathbf{p}} \mathcal{L}\left(\mathbf{a}^{(t+1)}, \mathbf{z}^{(t+1)}, \mathbf{p} ; \mathbf{s}^{(t)}\right)
\end{aligned}
$$

An ADMM Approach

- Initialization: random initialization of $\mathbf{a}^{(0)}, \mathbf{z}^{(0)}, \mathbf{p}^{(0)}$, and $\mathbf{s}^{(0)}=\mathbf{0}$.
- Iterations: alternate between the primal updates of variables \mathbf{a}, \mathbf{z}, and \mathbf{p}, and the dual update for \mathbf{s} until convergence.

$$
\begin{aligned}
& \mathbf{a}^{(t+1)}=\arg \min _{\mathbf{a}} \mathcal{L}\left(\mathbf{a}, \mathbf{z}^{(t)}, \mathbf{p}^{(t)} ; \mathbf{s}^{(t)}\right) \\
& \text { - } \mathbf{z}^{(t+1)}=\arg \min _{\mathbf{z}} \mathcal{L}\left(\mathbf{a}^{(t+1)}, \mathbf{z}, \mathbf{p}^{(t)} ; \mathbf{s}^{(t)}\right) \\
& \mathbf{p}^{(t+1)}=\arg \min _{\mathbf{p}} \mathcal{L}\left(\mathbf{a}^{(t+1)}, \mathbf{z}^{(t+1)}, \mathbf{p} ; \mathbf{s}^{(t)}\right) \\
& \mathbf{s}^{(t+1)}=\mathbf{s}^{(t)}+\mathbf{a}^{(t+1)}-\mathbf{z}^{(t+1)}
\end{aligned}
$$

An ADMM Approach

- Initialization: random initialization of $\mathbf{a}^{(0)}, \mathbf{z}^{(0)}, \mathbf{p}^{(0)}$, and $\mathbf{s}^{(0)}=\mathbf{0}$.
- Iterations: alternate between the primal updates of variables \mathbf{a}, \mathbf{z}, and \mathbf{p}, and the dual update for \mathbf{s} until convergence.

$$
\begin{aligned}
& \mathbf{a}^{(t+1)}=\arg \min _{\mathbf{a}} \mathcal{L}\left(\mathbf{a}, \mathbf{z}^{(t)}, \mathbf{p}^{(t)} ; \mathbf{s}^{(t)}\right) \\
& \text { - } \mathbf{z}^{(t+1)}=\arg \min _{\mathbf{z}} \mathcal{L}\left(\mathbf{a}^{(t+1)}, \mathbf{z}, \mathbf{p}^{(t)} ; \mathbf{s}^{(t)}\right) \\
& \mathbf{p}^{(t+1)}=\arg \min _{\mathbf{p}} \mathcal{L}\left(\mathbf{a}^{(t+1)}, \mathbf{z}^{(t+1)}, \mathbf{p} ; \mathbf{s}^{(t)}\right) \\
& \mathbf{s}^{(t+1)}=\mathbf{s}^{(t)}+\mathbf{a}^{(t+1)}-\mathbf{z}^{(t+1)}
\end{aligned}
$$

- Output $\mathbf{a}^{(t)}, \mathbf{p}^{(t)}$.

An ADMM Approach

- Initialization: random initialization of $\mathbf{a}^{(0)}, \mathbf{z}^{(0)}, \mathbf{p}^{(0)}$, and $\mathbf{s}^{(0)}=\mathbf{0}$.
- Iterations: alternate between the primal updates of variables \mathbf{a}, \mathbf{z}, and \mathbf{p}, and the dual update for \mathbf{s} until convergence.

$$
\begin{aligned}
& \mathbf{a}^{(t+1)}=\arg \min _{\mathbf{a}} \mathcal{L}\left(\mathbf{a}, \mathbf{z}^{(t)}, \mathbf{p}^{(t)} ; \mathbf{s}^{(t)}\right) \\
& \mathbf{z}^{(t+1)}=\arg \min _{\mathbf{z}} \mathcal{L}\left(\mathbf{a}^{(t+1)}, \mathbf{z}, \mathbf{p}^{(t)} ; \mathbf{s}^{(t)}\right) \\
& \mathbf{p}^{(t+1)}=\arg \min _{\mathbf{p}} \mathcal{L}\left(\mathbf{a}^{(t+1)}, \mathbf{z}^{(t+1)}, \mathbf{p} ; \mathbf{s}^{(t)}\right) \\
& \mathbf{s}^{(t+1)}=\mathbf{s}^{(t)}+\mathbf{a}^{(t+1)}-\mathbf{z}^{(t+1)}
\end{aligned}
$$

- Output $\mathbf{a}^{(t)}, \mathbf{p}^{(t)}$.
- Remark: each update can be realized by solving simple least squares.

Numerical Results: Clean Case

- Parameters: $N=10000, \alpha=1.5 \mathrm{deg},|\kappa|=13, c=0.3, \lambda_{1}=1$, $\lambda_{2}=0.5$, and $\rho=1$.
- Exact recovery on a projection image of 70 S ribsome (up to a rotation).
- Perfect match of view angle distribution (up to a rotation).

(a) Original

(b) Reconstructed

(c) $\widetilde{\mathbf{p}}(\theta)$

Numerical Results: Noisy Case

Figure: SNR $[\mathrm{dB}]=6.61,-0.32,-4.38,-7.25,-9.49$.

- EM algorithm for maximum marginalized log-likelihood estimation:

$$
\max _{\mathbf{a}, \mathbf{p}} \sum_{i=1}^{N} \ln P\left(\widehat{\mathbf{y}}_{i} \mid \mathbf{a}, \mathbf{p}\right) \text { s.t. } \mathbf{p} \geq \mathbf{0} \text { and } \mathbf{1}^{\top} \mathbf{p}=1
$$

Numerical Results: Noisy Case

- Parameters: $N=10000, \alpha=3.8 \mathrm{deg},|\kappa|=13, c=0.3, \lambda_{1}=1$, $\lambda_{2}=5$, and $\rho=1$.
- Results over 20 independent experiments.
- Performance: $A D M M+E M>A D M M>E M$.

Thank you!

- Our paper Two-dimensional Tomography from Noisy Projection Tilt Series Taken at Unknown View Angles with Non-uniform Distribution is available online at:
https://ieeexplore.ieee.org/document/8803755
- Our codes are available online at: https://github.com/LingdaWang/2D_TOMO_ICIP2019

[^0]: ${ }^{1}$ Samit Basu and Yoram Bresler, Feasibility of tomography with unknown view angles, IEEE Transactions on Image Processing 9 (2000), no.6, 1107-1122.
 ${ }^{2}$ Amit Singer and H-T Wu, Two-dimensional tomography from noisy projections taken at unknown random directions, SIAM journal on imaging sciences 6(2013), no.1, 136=175.

[^1]: ${ }^{1}$ Samit Basu and Yoram Bresler, Feasibility of tomography with unknown view angles, IEEE Transactions on Image Processing 9 (2000), no.6, 1107-1122.
 ${ }^{2}$ Amit Singer and H-T Wu, Two-dimensional tomography from noisy projections taken at unknown random directions, SIAM journal on imaging sciences 6(2013), no.1, 136=175.

