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ABSTRACT

In this dissertation, several topics in machine learning are presented, in-

cluding sequential prediction and decision making (e.g., time series/spatio-

temporal sequences prediction and bandit learning), joint community detec-

tion and phase synchronization, and acceleration methods for convex opti-

mization. Many applications such as demand/inventory planning, precipi-

tation/climate prediction, online recommendation/advertising, web search,

cryo-electron microscopy (cryo-EM) reconstruction, optimal transport, and

video colocation have been shown to benefit from topics studied in this dis-

sertation.

In Part I (Chapters 2, 3, 4, and 5), we focus on sequential prediction and

decision making problems.

Chapters 2 and 3 focus on sequential prediction problems, including both

time series and spatio-temporal sequences. Chapter 2 focuses on the prob-

lem of predicting sea surface temperature (SST) within the El Niño-Southern

Oscillation (ENSO) region, which has been extensively studied recently due

to its significant influence on global temperature and precipitation patterns.

Statistical models such as linear inverse model (LIM), analog forecasting

(AF), convolutional neural network (CNN), and recurrent neural network

(RNN) have been widely used for ENSO prediction, offering flexibility and

relatively low computational expense compared to large dynamic models.

However, most of these models have limitations in capturing spatial patterns

in SST variability or relying solely on linear dynamics. Chapter 2 presents

a modified convolutional gated recurrent unit (ConvGRU) network for the

ENSO region spatio-temporal sequence prediction problem, along with the

Niño 3.4 index prediction as a down stream task. The proposed ConvGRU

network, with an encoder-decoder sequence-to-sequence (Seq2Seq) structure,

takes historical SST maps of the Pacific region as inputs and generates fu-

ture SST maps for the subsequent months within the ENSO region. To
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evaluate the performance of the ConvGRU network, we train and test it

using simulation and reanalysis datasets from multiple climate model en-

sembles, including a pre-industrial simulation spanning approximately 1300

years from the community climate system model version 4 (CCSM4) and

a 30-member historical ensemble during 1921-2100 using the NOAA seam-

less system for prediction and earth system research (SPEAR) model. We

also compare and contrast the prediction skill of the ConvGRU network

against SOTA models. The results demonstrate that the ConvGRU network

significantly improves the predictability of the Niño 3.4 index compared to

existing statistical and deep learning prediction models, including LIM, AF,

CNN, and RNN. This improvement is evidenced by extended useful predic-

tion range, higher Pearson correlation (PC), lower root-mean-square error

(RMSE), and lower weighted mean absolute percentage error (wMAPE). In

Chapter 3, a practical and robust distribution forecast framework that re-

lies on backtest-based bootstrap and adaptive residual selection is proposed.

Distribution forecast can quantify forecast uncertainty and provide various

forecast scenarios with their corresponding estimated probabilities. Accurate

distribution forecast is crucial for demand planning when making production

capacity or inventory allocation decisions. The proposed approach is robust

to the choice of the underlying forecasting model, which accounts for un-

certainty around the input covariates and relaxes the independence between

residual and covariate assumptions. It reduces the absolute coverage error

(ACE) by more than 63% compared to the classic bootstrap approaches and

by 2%−32% compared to a variety of state-of-the-art (SOTA) deep learning

approaches on in-house product sales data and M4-hourly competition data.

Chapters 4 and 5 present two bandit learning problems. In Chapter 4,

we consider a popular bandit model, cascading bandit (CB), for web search

and online advertisement, where an agent aims to learn the K most attrac-

tive items out of a ground set of size L during the interaction with a user.

Meanwhile, we take it a step further by considering CB in the piecewise-

stationary environment where the user’s preference may change over time.

Two efficient algorithms, GLRT-CascadeUCB and GLRT-CascadeKL-UCB, are

developed and shown to ensure regret upper bounds of O(
√
NLT log T ),

where N is the number of piecewise-stationary segments, and T is the length

of time horizon. In addition, we show that the proposed algorithms are op-

timal (up to a logarithmic factor) by deriving a minimax lower bound of
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Ω(
√
NLT ) for the piecewise-stationary CB. The efficiency of the proposed

algorithms relative to existing approaches is validated through numerical ex-

periments on both synthetic and real-world datasets. Chapter 5 studies the

adversarial graphical contextual bandit problem, a variant of the adversar-

ial multi-armed bandit problem, which leverages two categories of the most

common side information: contexts and side observations. In this setting,

an agent repeatedly chooses a set of L actions after being presented with

a d-dimensional context vector. The agent not only incurs and observes

the loss of the chosen action but also observes the losses of its neighboring

actions in observation structures which are encoded as a series of feedback

graphs. Two algorithms are developed based on EXP3. Under mild conditions,

our analysis shows that for undirected feedback graphs the first algorithm,

EXP3-LGC-U, achieves the regret of O(
√

(L+ α(G)d)T logL) where α(G) is

the average independence number of the feedback graphs. A slightly weaker

result is presented for the directed graph setting as well. The second algo-

rithm, EXP3-LGC-IX, is developed for a special class of problems, for which

the regret is reduced to O(
√
α(G)dT logL log(LT )) for both directed and

undirected feedback graphs.

Part II (Chapter 6) studies the joint community detection and phase syn-

chronization problem on the stochastic block model with relative phase where

each node is associated with an unknown phase angle. This problem, with a

variety of real-world applications, aims to recover the cluster structure and

associated phase angles simultaneously. We show this problem exhibits a

multi-frequency structure by closely examining its maximum likelihood esti-

mation (MLE) formulation, whereas existing methods are not originated from

this perspective. To this end, two simple yet efficient algorithms that lever-

age the MLE formulation and benefit from the information across multiple

frequencies are proposed. The former is a spectral method based on the novel

multi-frequency column-pivoted QR factorization. The factorization applied

to the top eigenvectors of the observation matrix provides key information

about the cluster structure and the associated phase angles. The second ap-

proach is an iterative multi-frequency generalized power method where each

iteration updates the estimation in a matrix-multiplication-then-projection

manner. Numerical experiments show that the proposed algorithms signifi-

cantly improve the ability of exactly recovering the cluster structure and the

accuracy of the estimated phase angles, compared to SOTA algorithms.
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Part III of this dissertation (Chapters 7 and 8) focuses on acceleration

methods for convex optimization problems. Chapter 7 introduces almost

tune-free stochastic variance reduced gradient (SVRG) algorithm and stochas-

tic recursive gradient (SARAH) algorithm equipped with i) Barzilai-Borwein

(BB) step sizes; ii) averaging; and, iii) the inner loop length adjusted to

the BB step sizes. In particular, SVRG, SARAH, and their BB variants are

first re-examined through an estimate sequence lens to enable new averaging

methods that tighten their convergence rates theoretically and improve their

performance empirically when the step size or the inner loop length is chosen

large. Then a simple yet effective means to adjust the number of iterations

per inner loop is developed to enhance the merits of the proposed averaging

schemes and BB step sizes. Chapter 8 introduces and analyzes a variant

of the Frank Wolfe (FW) algorithm termed ExtraFW that has faster rate

O(1/k2) on a class of machine learning problems where k is the iteration in-

dex. Compared with other parameter-free FW variants that have faster rates

on the same problems, ExtraFW has improved rates and fine-grained analysis

thanks to its prediction-correction update. Numerical experiments on binary

classification with different sparsity-promoting constraints demonstrate that

the empirical performance of ExtraFW is significantly better than FW and

even faster than Nesterov’s accelerated gradient on certain datasets. For

matrix completion, ExtraFW enjoys smaller optimality gap and lower rank

than FW.
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CHAPTER 1

INTRODUCTION

Machine learning (ML) is a field devoted to understanding and building meth-

ods that learn, that is, methods that leverage data to improve performance

on some set of tasks [3]. It has fundamentally reshaped the world and im-

proved most people’s lives during the past decades, as tremendous progress

and advancement have been made in this filed. Due to its wide applicability

and remarkable performance, techniques developed by ML have been deeply

embedded into real world applications, such as autonomous driving, recom-

mendation systems, web search, speech recognition, and medicine design, to

name a few.

As a cross-disciplinary field, ML covers plenty of topics across optimiza-

tion, statistics, probability, modeling, etc. This dissertation, a summary of

my Ph.D. research, presents several topics in ML, including sequential pre-

diction and decision making, joint community detection and phase synchro-

nization, and acceleration methods for convex optimization. In Part I , we

study two sequential prediction problems and two sequential decision making

problems, including robust nonparametric distribution forecast [4], spatio-

temporal sequence model for climate prediction [5], cascading bandits [6] in

the piecewise-stationary environment [7], and adversarial graphical contex-

tual bandits [8]. In Part II, we study on an emerging problem, joint commu-

nity detection and phase (group) synchronization [9], which aims to recover

the cluster structure and the associated phase (group) simultaneously. For

convex optimization (Part III ), we mainly focus on the acceleration meth-

ods, in which we introduces almost tune-free stochastic variance reduction

algorithms [10] and an accelerated Frank-Wolfe (FW) algorithm [11].
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1.1 Sequential Prediction and Decision Making

1.1.1 Convolutional GRU Network for Seasonal Prediction of
the El Niño-Southern Oscillation

The El Niño-Southern Oscillation (ENSO) phenomenon over the tropical Pa-

cific region is the most energetic driver of climate variability on the seasonal

to interannual timescales [12]. It can significantly influence global oceanic

and atmospheric dynamics, particularly during its irregular warming (El

Niño) and cooling (La Niña) phases. The impacts of ENSO are widespread,

leading to anomalous temperature and precipitation patterns on a global

scale [13, 14, 15], as well as causing extreme and hazardous weather con-

ditions on regional scales, such as winter to early spring tornado outbreaks

in the United States [16], tropical cyclone intensity changes in northwest-

ern Pacific [17], and unusual fire weather in Australia [18] and the United

States [19]. Consequently, accurate prediction of sea surface temperature

(SST) maps within the ENSO region and its associated Niño indices—for in-

stance, Niño 1+2, 3, 3.4, and 4 [20, 21, 22]—has become a critical area of re-

search. Reliable ENSO prediction can provide valuable insights for decision-

making processes in various sectors, including government agencies, food and

insurance industries, and transportation, enabling them to prepare for the

associated impacts [23, 24].

Prediction models for SST maps within the ENSO region and the associ-

ated Niño indices can be broadly classified into two types: dynamical mod-

els and statistical models. Dynamical models, such as the north American

multi-model ensemble (NMME) [25], are commonly used for the seasonal

ENSO prediction. However, these model ensembles are computationally in-

tensive, sensitive to initialization conditions, and thus expensive to run. Con-

sequently, dynamical models usually require multiple model runs with various

initialization conditions with the help of supercomputers. In contrast, Chap-

ter 2 focuses on the statistical models due to their simplicity and comparable

prediction skill to dynamical models [26, 27, 28]. One widely used statistical

ENSO prediction model is the linear inverse model (LIM) [29, 30], which em-

ploys principal components analysis and Markov prediction to approximate

trends and predict future states based on empirical orthogonal functions, sim-

ilar to linear regression (LR) [28]. However, LIM fails to capture nonlinear
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ENSO dynamics—for instance, surface-subsurface interactions and surface

winds [31]—and can lead to underestimation of ENSO variability. Another

type of statistical prediction model is based on Lorenz’s analog forecasting

(AF) [32]. Initially, AF based models use observed or free-running model

data as libraries of states. Predictions are then generated by matching states

in the library that are very similar to observed data at prediction initializa-

tion and follow the evolution on these so-called analogs. Advantages of AF

based models include avoiding expensive and unstable initialization systems

and reducing structural model error. The recently introduced kernel ana-

log forecasting (KAF) model [33, 28, 34], as a generalization of conventional

AF based models, utilizes nonlinear kernels to better capture nonlinearity

in ENSO dynamics. Recently, with the development of deep learning tech-

niques, the convolutional neural network (CNN) [35] and long short-term

memory (LSTM) network [36, 37] have been used for predicting Niño in-

dices, but their prediction skills have hardly been extended to predict spatial

patterns in SST variability within the ENSO region.

In Chapter 2, we propose the use of a convolutional gated recurrent unit

(ConvGRU) network, inspired by and modified from the original develop-

ments [38, 39, 40], to predict SST maps within the ENSO region, along with

the Niño 3.4 index as a downstream task, which is the most commonly used

index to define El Niño and La Niña events [22]. The ConvGRU network has

an encoder-decoder sequence-to-sequence (Seq2Seq) structure, with both the

encoder and the decoder consisting of multi-layer ConvGRU cells. The en-

coder compresses the input SST maps of the Pacific region into hidden states

across all layers, and the decoder unfolds the hidden states from the encoder

to generate predictions within the ENSO region. The ConvGRU cell, a key

component of both the encoder and the decoder, incorporates several 2D con-

volutional layers. This architecture enables the ConvGRU network to take

historical SST maps of the Pacific region as inputs and generate future SST

maps of the ENSO region for subsequent months, taking into consideration

of spatio-temporal correlation of the SST maps. Moreover, this architecture

significantly reduces the number of network parameters while accelerating

the training process.

To evaluate the performance of the ConvGRU network, we conduct nu-

merical experiments and compare it against existing models, such as KAF,

LIM, Seq2Seq with GRU, LR, and CNN using global climate ensembles and
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atmospheric reanalysis datasets. These datasets include two SST simulation

datasets and one surface air temperature reanalysis dataset. The comparison

results demonstrate that the ConvGRU network achieves significant improve-

ments over other models in terms of useful prediction range, Pearson corre-

lation (PC), root-mean-square error (RMSE), and weighted mean absolute

percentage error (wMAPE).

By developing an improved prediction model that accurately captures the

complex dynamics and spatial patterns of SST within the ENSO region,

Chapter 2 aims to contribute to better understanding and prediction of

ENSO-related climate phenomena. Further research can explore further en-

hancements to the network architecture and investigate its applicability to

other climate-related features and prediction tasks.

1.1.2 Robust Nonparametric Distribution Forecast with
Backtest-based Bootstrap and Adaptive Residual
Selection

Time series forecasting is crucial in many industrial applications and enables

data-driven planning [41, 42, 43], such as making production capacity or

inventory allocation decisions based on demand forecast [44]. Planners or

optimization systems that consume the forecast often require the estimated

distribution of the response variable (referred to as the distribution forecast,

or the DF) instead of only the estimated mean/median (referred to as the

point forecast, or the PF) to make informed and nuanced decisions. An

accurate DF method should ideally factor in different sources of forecast

uncertainty, including uncertainty associated with parameter estimates and

model misspecification [42]. Furthermore, when deploying a DF model in

industrial applications, there are other important practical considerations

such as the ease of adoption, latency, interpretability, and robustness to

model misspecification. To this end, a practical and robust DF framework

that uses backtesting [45] is proposed in Chapter 3 to build a collection of

predictive residuals and an adaptive residual selector to pick the relevant

residuals for bootstrapping DF.

We empirically evaluate the performance of various DF approaches on our

in-house product sales data and the M4-hourly [46, 47] competition data. The
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proposed DF approach reduces the absolute coverage error (ACE) by more

than 63% compared to the classic bootstrap approaches and by 2% − 32%

compared to a variety of state-of-the-art (SOTA) deep learning approaches.

1.1.3 Piecewise-Stationary Cascading Bandits

Online recommendation [48] and web search [49, 50] are of significant im-

portance for the modern economy. Based on a user’s browsing history, these

systems strive to maximize satisfaction and minimize regret by presenting

the user with a list of items (e.g., web pages and advertisements) that meet

her/his preference. Such a scenario can be modeled via cascading bandits

(CB) [6], where an agent aims to identify the K most attractive items out

of total L items contained in the ground set. The learning task proceeds

sequentially, where per time slot, the agent recommends a ranked list of K

items and receives the reward and feedback on which item is clicked by the

user.

CB can be viewed as multi-armed bandits (MAB) tailored for the cascade

model (CM) [51], where CM models a user’s online behavior. Existing works

on CB [6, 52] can be categorized according to whether stationary or non-

stationary environment is studied. In stationary environments, the attraction

distributions of items do not evolve over time. On the other hand, non-

stationary environments are prevalent in real-world applications such as web

search, online advertisement, and recommendation since user’s preference

is time-varying [53, 54, 55]. Algorithms designed for stationary scenarios

can suffer from a linear regret when applied to non-stationary environments

directly [56, 57].

Chapter 4 focuses on the piecewise-stationary environment, where the

user’s preference remains stationary over some number of time slots, named

piecewise-stationary segments, but can shift abruptly at some unknown times,

called change-points. To address the piecewise-stationary environment, one

can either choose passively adaptive approaches [57, 58, 59] or actively adap-

tive approaches [60, 61, 62, 63]. Passively adaptive approaches ignore when a

change-point occurs. For active adaptive approaches, a change-point detec-

tion algorithm such as CUSUM [64, 61], Page Hinkley Test (PHT) [65, 61], or

comparing running sample means over a sliding window (CMSW) [60] is in-
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cluded. Within the area of piecewise-stationary CB, only passively adaptive

approaches have been studied [56]. In Chapter 4, we introduce the generalized

likelihood ratio test (GLRT) [66, 62] for actively adaptive CB algorithms. In

particular, we develop two GLRT based algorithms GLRT-Cascade-UCB and

GLRT-CascadeKL-UCB to enhance both theoretical and practical effectiveness

for piecewise-stationary CB.

1.1.4 Adversarial Graphical Contextual Bandits

Since the classical MAB does not fully leverage the widely available side in-

formation, it is not delicate enough for real world applications. This has

motivated studies on contextual bandits [67, 68, 69, 70] and graphical ban-

dits [71, 72, 73, 74], which aim to address two categories of the most common

side information, contexts and side observations, respectively. In a contextual

bandit problem, a learning agent chooses an action to play based on the con-

text for the current time slot and the past interactions. In a graphical bandit

setup, playing an action not only discloses its own loss, but also the losses

of its neighboring actions. Applications of contextual bandits include mobile

health [75] and online personalized recommendation [67, 76, 77], whereas ap-

plications of graphical bandits include viral marketing, online pricing, and

online recommendation in social networks [74, 78].

However, contextual or graphical bandits alone may still not capture many

aspects of real-world applications in social networks efficiently. As a moti-

vating example, consider the viral marketing over a social network where a

salesperson aims to investigate the popularity of a series of products [79]. At

each time slot, the salesperson could offer a survey (context) of some product

to a user together with a promotion. The salesperson also has a chance to

survey the user’s followers (side observations) in this social network which

can be realized by assuming that i) if the user would like to get the pro-

motion, the user should finish the questionnaire and share it in the social

network, and ii) if the followers would like to get the same promotion, they

need to finish the same questionnaire shared by the user.

Chapter 5 presents the first study on adversarial linear contextual bandits

with graph-structured side observations (or simply, graphical contextual ban-

dits). Specifically, at each time slot t, an adversary chooses the loss vector
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for each action in a finite set of L actions, and then a learning agent chooses

from this L-action set after being presented with a d-dimensional context.

After playing the chosen action, the agent not only incurs and observes the

loss of the chosen action, but also observes losses of its neighboring action

in the feedback graph Gt, where the losses are generated by the contexts

and loss vectors under the linear payoff assumption [80]. The goal of the

agent is to minimize the regret, defined as the gap between the losses in-

curred by the agent and that of some suitable benchmark policy. Under

mild conditions, we develop two algorithms for this problem with theoretical

guarantees: i) EXP3-LGC-U, inspired by EXP3-SET [72, 74] and LinEXP3 [81];

ii) EXP3-LGC-IX, inspired by EXP3-IX [82] and LinEXP3.

1.2 Multi-Frequency Joint Community Detection and

Phase Synchronization

Community detection on stochastic block model (SBM) [83] and phase syn-

chronization [84], are both of fundamental importance among multiple fields,

such as ML [85, 86], social science [87, 88], and signal processing [89, 90, 91],

to name a few.

Community detection on SBM. Consider the symmetric SBM with

N nodes that fall into M underlying clusters of equal size s = N/M. SBM

generates a random graph G such that each pair of nodes (i, j) are connected

independently with probability p if (i, j) belong to the same cluster and with

probability q otherwise. The goal is to recover underlying cluster structure

of nodes, given the adjacency matrix ASBM ∈ {0, 1}N×N of the observed

graph G. During the past decade, significant progress has been made on the

information-theoretic threshold of the exact recovery on SBM [92, 93, 83],

in the regime where p = α logN/N, q = β logN/N, and
√
α −
√
β >

√
M . The

maximum likelihood estimation (MLE) formulation of community detection

on SBM

max
H∈H

〈
ASBM,HH⊤〉 , (1.1)

is capable of achieving the exact recovery in the above regime, where H :=

{H ∈ {0, 1}N×M : H1M = 1N ,H
⊤1N = s1M} is the feasible set. However,

the MLE (1.1) is non-convex and NP-hard in the worst case. Therefore,
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different approaches based on MLE (1.1) or other formulations are proposed

to tackle this problem such as spectral method [94, 95, 96, 97, 98, 99, 100,

101], semidefinite programming (SDP) [92, 102, 103, 104, 105, 106, 107, 108,

109], and belief propagation [93, 110].

Phase synchronization. The phase synchronization problem concerns

recovering phase angles θ1, . . . , θN in [0, 2π) from a subset of possibly noisy

phase transitions θij := (θi − θj) mod 2π. The phase synchronization prob-

lem can be encoded into an observation graph G where each phase angle is

associated with a node i, and the phase transitions are observed between

θi and θj if and only if there is an edge in G connecting the pair of nodes

(i, j). Under the random corruption model [84, 111], observations constitute

a Hermitian matrix whose (i, j)th entry for any i < j satisfies,

APh,ij =

eι(θi−θj), with probability r ∈ [0, 1),

uij ∼ Unif(U(1)), with probability 1− r,

where ι =
√
−1 is the imaginary unit, and U(1) is unitary group of dimension

1. The most common formulation of the phase synchronization problem is

through the following nonconvex optimization program

max
x∈CN

1

〈
APh,xx

H
〉
, (1.2)

where CN
1 is the Cartesian product of N copies of U(1). Again, similar to

SBM, solving (1.2) is non-convex and NP-hard [112]. Many algorithms have

been proposed for practical and approximate solutions of (1.2), including

spectral and SDP relaxations [84, 113, 114, 115, 116], and generalized power

method (GPM) [117, 118, 119]. Besides, [120, 121, 122] consider the phase

synchronization problem in multiple frequency channels which in general out-

performs the formulation (1.2).

Recently, an increasing interest [123, 1, 2] has been seen in the joint com-

munity detection and phase (or group) synchronization problem (joint esti-

mation problem, for brevity). As illustrated in Figure 1.1, the joint esti-

mation problem assumes data points associated with phase angles (or group

elements) in a network fall into M underlying clusters, and aims to simul-

taneously recover the cluster structure and the associated phase angles (or

group elements). The joint estimation problem is motivated by the 2D class
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Figure 1.1: Illustration of the joint estimation problem on a network with
two clusters of equal size. Each node is associated with a phase angle. Each
pair of nodes within the same cluster (resp. across clusters) are
independently connected with probability p (resp. q) as shown in solid
(resp. dash) lines. Also, a phase transition θij = θi − θj (resp. θij is noise)
is observed on each edge (i, j) within each cluster (resp. across clusters).
The goal is to recover the cluster structure and the associated phase angles
simultaneously.

averaging procedure in cryo-electron microscopy (cryo-EM) single particle

reconstruction [124, 89, 90], which aims to cluster 2D projection images taken

from similar viewing directions, align (U(1) or SO(2) synchronization due to

the in-plane rotation) and average projection images in each cluster to im-

prove their signal-to-noise ratio.

Chapter 6 studies the joint estimation problem based on the probabilistic

model, stochastic block model with relative phase (SBM-Ph), which is sim-

ilar to the probabilistic model considered in recent publications [1, 2, 123].

Specifically, given N nodes in a network assigned into M underlying clusters

of equal size s = N/M, we assume that each node i is associated with an

unknown phase angle θ∗i ∈ Ω, where Ω is a discretization of [0, 2π)1. For each

pair of nodes (i, j), if they belong to the same cluster, their phase transition

θij := (θi−θj) mod 2π can be obtained with probability p; otherwise, we ob-

tain noise generated uniformly at random from Ω with probability q. The goal

of the joint estimation problem is to simultaneously recover the cluster struc-

ture and the associated phase angles. This problem can be formulated as an

optimization program maximizing not only the edge connections inside each

cluster, but also the consistency among the observed phase transitions within

1The joint estimation problem is also extended into [0, 2π) in Section 6.2.3.

9



each cluster. Still, such kind of optimization programs, similar to commu-

nity detection on SBM (1.1) and phase synchronization (1.2), is non-convex.

In [123, Fan et al., 2022], an SDP based method is proposed to achieve ap-

proximate solutions with a polynomial computational complexity. [1, Fan et

al., 2023] proposes a spectral method based on the block-wise column-pivoted

QR (CPQR) factorization which scales linearly with the number of edges in

the network. The most recent work [2] develops an iterative GPM where each

iteration follows a matrix-multiplication-then-projection manner. The itera-

tive GPM requires an initialization and the computational complexity of each

iteration also scales linearly with the number of edges in the network. How-

ever, existing methods are not developed from the MLE perspective which

limits their performance on the joint estimation problem.

Unlike existing methods, Chapter 6 studies the joint estimation problem by

first closely examining its MLE formulation which exhibits a multi-frequency

structure (detailed in Section 6.2). More specifically, the MLE formulation is

maximizing the summation over multiple frequency components whose first

frequency component is actually the objective function studied in [123, Fan

et al., 2022], [1, Fan et al., 2023], and [2, Chen et al, 2021]. Based on the

new insight, a spectral method based on the multi-frequency column-pivoted

QR (MF-CPQR) factorization and an iterative multi-frequency generalized

power method (MF-GPM) are proposed to tackle the MLE formulation of the

joint estimation problem, and both significantly outperform SOTA methods

in numerical experiments.

1.3 Acceleration Methods for Convex Optimization

1.3.1 Almost Tune-Free Variance Reduction

Consider the empirical risk minimization (ERM) problem,

min
x∈Rd

f(x) :=
1

n

∑
i∈[n]

fi(x), (1.3)

where x ∈ Rd is the parameter vector to be learned from data; the set [n] :=

{1, 2, . . . , n} collects data indices; and, fi is the loss function associated with
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datum i. Suppose that f is µ-strongly convex and has L-Lipchitz continuous

gradient. The condition number of f is denoted by κ := L/µ. Throughout,

x∗ denotes the optimal solution of (1.3). The standard approach to solve

(1.3) is gradient descent (GD) [125], which updates the decision variable via

xk+1 = xk − η∇f(xk),

where k is the iteration index and η the step size (or learning rate). For a

strongly convex f , GD convergences linearly to x∗, that is, ∥xk − x∗∥2 ≤
(cκ)

k∥x0 − x∗∥2 for some κ-dependent constant cκ ∈ (0, 1) [125].

In the big data regime however, where n is large, obtaining the gradi-

ent per iteration can be computationally prohibitive. To cope with this,

the stochastic gradient descent (SGD) reduces the computational burden by

drawing uniformly at random an index ik ∈ [n] per iteration k and adopting

∇fik(xk) as an estimate of ∇f(xk). Albeit computationally lightweight with

the simple update

xk+1 = xk − ηk∇fik(xk),

the price paid is that SGD comes with sublinear convergence, hence slower

than GD [126, 127]. It has been long recognized that the variance E[∥∇fit(xt)−
∇f(xt)∥2] of the gradient estimate affects critically SGD’s convergence slow-

down.

This naturally motivated gradient estimates with reduced variance com-

pared with SGD’s simple ∇fik(xk). A gradient estimate with reduced vari-

ance can be obtained by capitalizing on the finite sum structure of (1.3). One

idea is to judiciously evaluate a so-termed snapshot gradient ∇f(xs) and use

it as an anchor of the stochastic draws in subsequent iterations. Members

of the variance reduction family include stochastic variance reduced gradient

algorithm (SVRG) [128], stochastic average gradient algorithm (SAG) [129],

SAGA [130], mixed-integer surrogate optimization (MISO) [131], stochastic

recursive gradient algorithm (SARAH) [132], and their variants [133, 134,

135, 136]. Most of these algorithms rely on the update xk+1 = xk − ηvk,

where η is a constant step size and vk is an algorithm-specific gradient es-

timate that takes advantage of the snapshot gradient. In Chapter 7, SVRG

and SARAH are of central interest because they are memory efficient com-
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pared with SAGA and have no requirement for the duality arguments that

stochastic dual coordinate ascent algorithm (SDCA) [137] entails. Variance

reduction methods converge linearly when f is strongly convex. To fairly

compare the complexity of (S)GD with that of variance reduction algorithms

which combine snapshot gradients with the stochastic ones, we will rely on

the incremental first-order oracle (IFO) [138].

Definition 1.1. An IFO takes fi and x ∈ Rd as input and returns the

(incremental) gradient ∇fi(x).

For convenience, IFO complexity is abbreviated as complexity in Chap-

ter 7. A desirable algorithm obtains an ϵ-accurate solution satisfying

E[∥∇f(x)∥2] ≤ ϵ or E[f(x) − f(x∗)] ≤ ϵ with minimal complexity for a

prescribed ϵ. Complexity for variance reduction alternatives such as SVRG

and SARAH is O
(
(n + κ) ln 1

ϵ

)
, a clear improvement over GD’s complex-

ity O
(
nκ ln 1

ϵ

)
. When high accuracy (small ϵ) is desired, the complexity of

variance reduction algorithms is also lower than SGD’s complexity of O
(
1
ϵ

)
.

Though theoretically appealing, SVRG and SARAH entail grid search to

tune the step size which is often painstakingly hard and time consuming. An

automatically tuned step size for SVRG was introduced by Barzilai-Borwein

(BB) [139, 140]. However, since both SVRG and SARAH have a double-

loop structure, the inner loop length also requires tuning in addition to the

step size. Other works relying on BB step sizes introduce additional tunable

parameters on top of the inner loop length [141]. In a nutshell, tune-free

variance reduction algorithms still have desired aspects to investigate and

fulfill.

Along with the BB step sizes, Chapter 7 establishes that in order to obtain

tune-free SVRG and SARAH schemes, one must: i) develop novel types

of averaging, and ii) adjust the inner loop length along with step size as

well. Averaging in double-loop algorithms reflects the means of choosing the

starting point of the next outer loop [128, 140, 132]. The types of averaging

considered so far have been employed as tricks to simplify proofs while in the

algorithm itself, the last iteration is the most prevalent choice for the starting

point of the ensuing outer loop. However, we contend that different averaging

methods result in different performance. The best averaging depends on the

choice of other parameters. In addition to averaging, we argue that the choice

of the inner loop length for BB-SVRG in [140] is too pessimistic. Addressing
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this with a simple modification leads to the desired almost tune-free SVRG

and SARAH.

1.3.2 Parameter-Free Frank Wolfe with Faster Rates

Consider the optimization problem

min
x∈X

f(x), (1.4)

where f is a smooth convex function, while the constraint set X ⊂ Rd is

assumed to be convex and compact, and d is the dimension of the variable

x. Throughout we denote by x∗ ∈ X a minimizer of (1.4). For many ML

and signal processing problems, the constraint set X can be structural but

it is difficult or expensive to project onto. Examples include matrix comple-

tion in recommendation systems [142] and image reconstruction [143], whose

constraint sets are nuclear norm ball and total-variation norm ball, respec-

tively. The applicability of projected GD [125] and Nesterov’s accelerated

gradient (NAG) [144, 145, 146] is thus limited by the computational barriers

of projection, especially as d grows large.

An alternative to GD for solving (1.4) is the Frank Wolfe (FW) algorithm

[147, 148, 149], also known as the conditional gradient method. FW circum-

vents the projection in GD by solving a subproblem with a linear loss per

iteration. For a structural X , such as the constraint sets mentioned earlier,

it is possible to solve the subproblem either in closed form or through low-

complexity numerical methods [148, 150], which saves computational cost

relative to projection. In addition to matrix completion and image recon-

struction, FW has been appreciated in several applications including struc-

tural support vector machine [151], video colocation [152], optimal transport

[153], and submodular optimization [154], to name a few.

Although FW has well documented merits, it exhibits slower convergence

when compared to NAG. Specifically, FW satisfies f(xk) − f(x∗) = O( 1
k
),

where the subscript k is iteration index. This convergence slowdown is con-

firmed by the lower bound which indicates that the number of FW subprob-

lems to solve in order to ensure f(xk) − f(x∗) ≤ ϵ is no less than O
(
1
ϵ

)
[155, 148]. Thus, FW is a lower-bound-matching algorithm in general. How-

ever, improved FW type algorithms are possible either in empirical perfor-
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mance or in speedup rates for certain subclasses of problems. Next, we deal

with these improved rates paying attention to whether implementation re-

quires knowing parameters such as the smoothness constant or the diameter

of X .
Parameter-dependent FW with faster rates. This class of algorithms uti-

lizes parameters that are obtained for different instances of f and X . Depend-
ing on the needed parameters, these algorithms are further classified into: i)

line search based FW, ii) shorter step size aided FW, and iii) conditional

gradient sliding (CGS). Line search based FW relies on f(x) evaluations

which renders inefficiency when acquisition of function values is costly. The

vanilla FW with line search converges with rate O( 1
k
) on general problems

[148]. Jointly leveraging line search and away steps, variants of FW converge

linearly for strongly convex problems when X is a polytope [156, 149]; see

also [157, 158]. To improve the memory efficiency of away steps, a variant

is further developed in [159, Garber et al., 2016]. Shorter step sizes refer

to those used in [160, Levitin et al, 1966] and [150, Garber et al., 2015],

where the step size is obtained by minimizing an 1D quadratic function over

[0, 1]. Shorter step sizes require the smoothness parameter, which needs to

be estimated for different loss functions. If X is strongly convex and the

optimal solution is at the boundary of X , it is known that FW converges

linearly [160]. For uniformly (and thus strongly) convex sets, faster rates are

attained given that the optimal solution is at the boundary of X [161]. When

both f and X are strongly convex, FW with shorter step size converges at

a rate of O( 1
k2
), regardless of where the optimal solution resides [150]. The

last category is CGS, where both smoothness parameter and the diameter

of X are necessary. In CGS, the subproblem of the original NAG that relies

on projection is replaced by gradient sliding that solves a sequence of FW

subproblems. A faster rate O( 1
k2
) is obtained at the price of: i) requiring

at most O(k) FW subproblems in the kth iteration and ii) an inefficient im-

plementation since the NAG subproblem has to be solved up to a certain

accuracy.

Parameter-free FW. The advantage of a parameter-free algorithm is its

efficient implementation. Since no parameter is involved, there is no concern

on the quality of parameter estimation. This also saves time and effort be-

cause the step sizes do not need tuning. Although implementation efficiency

is ensured, theoretical guarantees are challenging to obtain. This is because
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f(xk+1) ≤ f(xk) cannot be guaranteed without line search or shorter step

sizes. Faster rates for parameter-free FW are rather limited in number, and

most of existing parameter-free FW approaches rely on diminishing step sizes

at the order of O( 1
k
). For example, the behavior of FW when k is large and

X is a polytope is investigated under strong assumptions on f(x) to be twice

differentiable and locally strongly convex around x∗ [162]. Accelerated FW

(AFW) [163] replaces the subproblem of NAG by a single FW subproblem,

where constraint-specific faster rates are developed. Taking an active ℓ2 norm

ball constraint as an example, AFW guarantees a rate of O
(
ln k
k2

)
. A natural

question is whether the ln k in the numerator can be eliminated. In addition,

although the implementation involves no parameter, the analysis of AFW

relies on the value maxx∈X f(x).

Aiming at parameter-free FW with faster rates (on certain constraints)

that can bypass the limitations of AFW, Chapter 8 deals with the design and

analysis of ExtraFW. The extra in its name refers to the pair of gradients

involved per iteration, whose merit is to enable a prediction-correction (PC)

type of update. Though the idea of using two gradients to perform PC

updates originates from projection-based algorithms, such as ExtraGradient

[164] and Mirror-Prox [165, 166, 167], leveraging PC updates in FW type

algorithms for faster rates is novel.
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CHAPTER 2

CONVOLUTIONAL GRU NETWORK FOR
SEASONAL PREDICTION OF THE EL

NIÑO-SOUTHERN OSCILLATION

2.1 Preliminaries

2.1.1 ENSO Region Prediction Problem

We address the ENSO region prediction problems which involves predict-

ing future SST map sequences within the ENSO region of the Pacific, given

previously observed gridded SST maps of the Pacific region. Suppose that

SST maps of the Pacific region are sampled and averaged monthly on a grid

of size M × N , representing an SST map of the Pacific region as a ma-

trix in RM×N for a specific month. As monthly records of SST maps of

the Pacific region are accumulated, a sequence of such matrices is obtained,

X̃1, . . . , X̃t, . . . (∈ RM×N), where t denotes a specific month. Given the pre-

vious J-month (referred to as the condition range) observed SST maps of the

Pacific region, including the current one, represented as X̃t−J+1:t ∈ RJ×M×N .

The ENSO region spatio-temporal sequence prediction problem at month t

aims to predict the most likely K-month (referred to as the prediction range)

future SST maps within the ENSO region. These predicted maps are denoted

as Ŷt+1, . . . , Ŷt+K(∈ RM×N), abbreviated as Ŷt+1:t+K ∈ RK×M×N . Formally,

the problem can be stated as follows:

Ŷt+1:t+K = argmax
Yt+1:t+K

P
(
Yt+1:t+K

∣∣∣ X̃t−J+1:t

)
. (2.1)

The extent of the ENSO region for the predicted maps can cover the en-

tire Pacific region or any other region within the Pacific, depending on the

downstream task, for example, the south Pacific decadal oscillation [169]. In

real-world applications, SST maps of the Pacific region are typically sampled

and averaged monthly on a latitude-longitude grid of a specific resolution,
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such as 1◦×1◦ per latitude-longitude grid cell, and the prediction range spans

12 and 24 months.

The ENSO region prediction problem encompasses a series of downstream

tasks, such as predicting Niño indices. It holds potential applications in other

climate-related features such as fire weather and drought indices [18, 170].

2.1.2 Models for Spatio-Temporal Sequence Prediction

There exists a range of approaches for spatio-temporal sequence prediction,

including ML and traditional statistical models. We categorize these models

into autoregressive models and statistical models, highlighting their applica-

bility to weather and climate related tasks.

Autoregressive Models

Autoregressive models have found widespread usage in time series predic-

tion problems, including RNNs such as vanilla RNN [171], LSTM [36], and

GRU [172]. One multivariate variant of general-purpose RNN, known as

fully-connected RNN (FC-RNN) [38, 173], is among the earliest models em-

ployed for the spatio-temporal sequence prediction, which takes vectorized

inputs (spatio maps). The main equations for FC-LSTM can be summarized

as follows:

it = σi(Wixxt +Wihht−1 + bi), • Input gate

ft = σf (Wfxxt +Wfhht−1 + bf ), • Forget gate

ot = σo(Woxxt +Wohht−1 + bo), •Output gate

c̃t = σc̃(Wc̃xxt +Wc̃hht−1 + bc̃), • New memory cell

ct = ft ⊙ ct−1 + it ⊙ c̃t, • Final memory cell

ht = ot ⊙ σh(ct), • Hidden state

where ⊙ represents the element-wise product (Hardmard product), and σ(·)
is either the sigmoid or tanh function.

However, FC-LSTM has limitations in efficiently capturing spatial correla-

tions. To overcome this drawback, ConvLSTM [38] is introduced, which

incorporates 2-D convolutional layers within an LSTM cell. ConvLSTM
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has been further enhanced with various variants and successors such as

TrajGRU [39], CDNA [174], PredRNN [175]. Another kind of autoregres-

sive models for spatio-temporal sequence prediction is based on transform-

ers [176, 177]. Additionally, autoregressive models have been combined with

other techniques, such as graph neural networks [178, 179] and generative

models [180], leading to significant achievements in short to medium-range

weather prediction and other spatio-temporal sequence prediction applica-

tions.

Traditional Statistical Climate Models

Statistical climate models employ statistical techniques tailored for climate-

related data analysis and prediction. Examples include LIM [29, 30] and

KAF [28, 33, 34].

LIM assumes that the dynamics of a system can be described by a linear

stochastic differential equation of the form:

dx

dt
= Bx+ ξ.

Here x(t) represents the state of the system at time t,B is a time-independent

operator, and ξ is stationary white noise. For stationary statistics, B must

be dissipative, meaning that its eigenvalues have negative real parts, and

C(τ) = G(τ)C(0) and G(τ) = exp(Bτ),

where C(0) and C(τ) are covariances of x at lags 0 and τ , respectively. In

prediction problems, G(τ)x(t) represents the best linear prediction of the

state at time t + τ , given the state at time t. The matrices B and G can

then be determined as B = τ−1 ln (C(τ)C(0)−1).

KAF is a generalization of AF [26, 32], incorporating both nonlinear ker-

nel methods and operator-theoretic ergodic theory [181]. By establishing

a rigorous connection with Koopman operator theory [182] for dynamical

systems, KAF can generate statistically optimal predictions as conditional

expectations. KAF is particularly useful when dealing with noisy and par-

tially observed data during prediction initialization.

These models form foundations for the spatio-temporal sequence prediction
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and have been applied to various weather and climate problems. However,

one should note that i) LIM is not capable of capturing nonlinear dynamics

with the ENSO region, ii) KAF is usually applied to Niño index prediction

task, and is not capable of predicting the spatial pattern within the ENSO

region. Those limitations of statistical models motivate the proposal of the

ConvGRU network.

2.2 Methodology

We now propose our ConvGRU network, which is inspired by and modified

from the ConvGRU model [39, 40], for the ENSO region spatio-temporal

sequence prediction. The ConvGRU network incorporates 2D convolutional

layers in both input-to-(hidden) state and (hidden) state-to-(hidden) state

transitions within a ConvGRU cell. This modification offers several advan-

tages over the FC-GRU cell, efficiently capturing spatial correlations of SST

maps and reducing the number of network parameters. The ConvGRU net-

work is composed of multiple stacked ConvGRU cells and follows an encoder-

decoder Seq2Seq structure. During the training process, samples are gener-

ated from fixed-length windows with different starting points.

2.2.1 Convolutional GRU cell

𝐈!

𝐈!"#

𝐇!$#

𝐇!

𝐇!"#

Figure 2.1: Illustration of 2D convolutional layers within a ConvGRU cell.
Convolutional layers are applied to update gate, reset gate, and new
memory cell (see (2.2)).

If we were to tackle the ENSO region spatio-temporal sequence predic-

tion problem in (2.1) using a network built with FC-GRU cells, we would
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need to vectorize inputs and hidden states before performing matrix mul-

tiplication. These steps are essentially equivalent to fully connected layers

in a neural network. However, the vectorization and matrix multiplication

steps are not required when using ConvGRU cells. Instead, a ConvGRU cell

employs 2D convolutional layers which offers several advantages, including

extracting meaningful spatial correlation features, reducing the number of

network parameters, and speeding up the training process.

The equations for the ConvGRU cell can be expressed as follows:

zt = σz(Wzx ∗ It +Wzh ∗Ht−1 + bz), • Update gate

rt = σr(Wrx ∗ It +Wrh ∗Ht−1 + br), • Reset gate

H̃t = σh̃(Wh̃x ∗ It +Wh̃rh ∗ (rt ⊙Ht−1) + bh̃), • New memory cell

Ht = (1− zt)⊙ H̃t + zt ⊙Ht−1, • Hidden state

(2.2)

where ∗ represents the convolution operator. Here, input It, hidden stateHt,

update gate zt, reset gate rt, and new memory cell H̃t are all 3D tensors,

with the last two dimensions representing the spatial dimensions (rows and

columns). Figure 2.1 illustrates the application of 2D convolutional layers

within a ConvGRU cell for both the input-to-(hidden) state and (hidden)

state-to-(hidden) state transitions. This allows the future hidden state in a

specific grid cell to extract relevant information locally from its neighboring

inputs and past hidden states. The size of the neighbors considered by a

grid cell is determined by the size of the convolutional kernel. A large kernel

is recommended for fast-evolving spatio-temporal sequences, while a small

kernel is more suitable for slow-varying sequences.

2.2.2 Encoder-Decoder Seq2Seq Structure

We utilize ConvGRU cells in (2.2) as a key component to construct our Con-

vGRU network for ENSO region spatio-temporal sequence prediction. We

recognize this as a Seq2Seq learning problem in (2.1) that can be effectively

addressed using the encoder-decoder Seq2Seq structure [172, 183].

Figure 2.2 illustrates the architecture of the ConvGRU network for a 3-

layer example, where the number of layers can be adjusted based on per-

formance considerations, such as RMSE. The ConvGRU network consists of
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Figure 2.2: Three-layer ConvGRU network, where the initial hidden states
of the decoder are copied from the last hidden states of the encoder. (a)
Encoder architecture utilizing ConvGRU cells and 2D convolutional layers.
(b) Decoder architecture constructed with ConvGRU cells and 2D
deconvolutional layer.

two main parts: the multi-layer encoder and the multi-layer decoder.

The encoder, depicted in Figure 2.2a, utilizes ConvGRU cells and 2D con-

volutional layers. Each layer’s hidden states are initialized as an all 0-tensor

and updated using inputs and previous hidden states, following (2.2). The

first layer takes SST maps of the Pacific region as inputs, while subsequent

layers receive output hidden states from the previous layer. Convolutional

layers are applied before each ConvGRU cell to adjust the number of the in-
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put channels and the size of the input spatial dimensions, enhancing feature

extraction.

The decoder, depicted in Figure 2.2b, consists of ConvGRU cells and 2D

deconvolutional layers. A crucial step that connects the encoder and the

decoder is that hidden states of each layer in the decoder are copied from the

last output hidden states of the corresponding layer in the encoder. The de-

coder architecture is similar to the encoder, but the flow direction of hidden

states among layers is reversed. This enables the adoption of the 2D deconvo-

lutional layer, which is the reverse operation of 2D convolutional layer. They

ensure that inputs and network parameters in each decoder layer’s ConvGRU

cells are consistent with those in the encoder, so that the last output hidden

states from the encoder can be utilized by the decoder. For outputs of the

first layer of the decoder, the grid is cropped to the ENSO region.

The encoder-decoder Seq2Seq structure of the ConvGRU network can be

interpreted as follows: the encoder compresses the input SST maps of the

Pacific region into hidden states across all layers, while the decoder unfolds

hidden states from the encoder to generate predictions for the ENSO re-

gion. Consequently, the ConvGRU network approximates the problem stated

in (2.1) as:

Ŷt+1:t+K = argmax
Yt+1:t+K

P
(
Yt+1:t+K

∣∣∣ X̃t−J+1:t

)
≈ argmax

Yt+1:t+K

P
(
Yt+1:t+K

∣∣∣ fENC

(
X̃t−J+1:t

∣∣∣WENC

))
≈ gDEC

(
fENC

(
X̃t−J+1:t

∣∣∣WENC

) ∣∣∣WDEC

)
,

(2.3)

where fENC(·|WENC) and gDEC(·|WDEC) represent the encoder and decoder,

respectively, with network parameters WENC and WDEC.

2.2.3 Training Process

Given a training dataset consisting of SST maps, denoted as {(X̃t, Ỹt)}Tt=1,

of the Pacific and ENSO regions, respectively, network parameters W ∗
ENC

and W ∗
DEC of the encoder and the decoder can be learned by minimizing

the difference between the predicted sequence Ŷt+1:t+K and the ground truth
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Figure 2.3: Data setup for training and testing. The green vertical lines
divide the entire dataset into the training data and the testing data. The
performance metric is evaluated to the right of the green line, and no data
in this part is used in training. (a) Data setup during the training process.
The red lines depict the training windows of {(X̃t, Ỹt)}Tt=1, where the left
part represents the condition range (t− J + 1 to t for some t), and the right
part represents the prediction range (t+ 1 to t+K). Note that all training
windows are to the left of the green line. (b) During the testing process, the
prediction range is strictly to the right of the green line.

sequence Ỹt+1:t+K . The optimization process can be described as follows:

W ∗
ENC,W

∗
DEC

= argmin
WENC,WDEC

T−K∑
t=J

L
(
Ỹt+1:t+K , gDEC

(
fENC

(
X̃t−J+1:t

∣∣∣WENC

) ∣∣∣WDEC

))
= argmin

WENC,WDEC

T−K∑
t=J

L
(
Ỹt+1:t+K , Ŷt+1:t+K

)
,

(2.4)

where the loss function L is the MSE loss. The optimization problem in (2.4)

can be solved using stochastic gradient descent algorithms, such as Adam [184]

and Adagrad [185].

During the training process, multiple training windows (instances) of length

J + K are generated from the training dataset, each with different start

points. The condition (J) and prediction (K) ranges remain fixed for all

training windows. For instance, if the training dataset spans from month

1 to month 10000, training windows can be created with t in (2.4) rang-

ing from J to 10000 −K. Figure 2.3a illustrates the generation of training

windows. Once the ConvGRU network is trained, it can be evaluated on a

testing dataset {(X̃t, Ỹt)}T+F
t=T+1, as depicted in Figure 2.3b.
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Figure 2.4: Performance on the ENSO region spatio-temporal sequence
prediction task. (a): Sample ground truth of the ENSO region starting
from February 1120. (b): Sample prediction of the ENSO region starting
from February 1120. (c): Sample difference between the ground truth and
prediction of the ENSO region start from February 1120. (d): RMSE per
grid cell and PC as a function of lead time computed in the testing period.

2.3 Results and Discussion

2.3.1 Experimental Setup

Experiment results and discussions of the ConvGRU network on various

global climate simulation and reanalysis datasets are presented. The datasets

used consist of two SST simulation datasets and one air temperature reanal-

ysis dataset. The performance of the ConvGRU network is evaluated on the

ENSO region spatio-temporal sequence prediction task for the SST datasets.

Additionally, the performance is compared with several existing models on
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a downstream task of predicting the Niño 3.4 index, which is calculated

based on the aforementioned ENSO region spatio-temporal sequence predic-

tion task. The ConvGRU network is also evaluated on the spatio-temporal

sequence prediction task for the air temperature dataset, which covers almost

2/3 of the global surface.

For numerical experiments, the ConvGRU network is implemented using

PyTorch [186]. The experiments are conducted on a Linux server equipped

with a single GPU, either NVIDIA GeForce GTX 1080Ti or NVIDIA RTX

A60001.

2.3.2 The CCSM4 Simulation Dataset

The CCSM4 dataset is a modeled SST dataset derived from a 1300-year,

pre-industrial control integration of the community climate system model

version 4 (CCSM4) [187]. The dataset is sampled and averaged monthly

on the model’s native ocean grid with a normal resolution of approximately

1◦×0.5◦ (longitude-latitude). The SST maps of the Pacific and ENSO regions

are extracted from specific longitude-latitude boxes. The Pacific region covers

16◦E-56◦W and 69◦S-32◦N (256 × 256 grid), while the ENSO region covers

170◦-120◦W and 5◦S-5◦N (45×38 grid). To reduce computational complexity

and GPU memory usage, the SST maps of the Pacific and ENSO regions

are down-sampled to 64 × 64 and 12 × 10 grids, respectively. The CCSM4

dataset is split into disjoint training and testing data periods, with year

1-1099 allocated for training and year 1100-1300 for testing.

For experiments on the CCSM4 dataset, a 3-layer ConvGRU network is

implemented. The condition range (J) and the prediction range (K) are set

to 48 and 24 months, respectively.

Figure 2.4 illustrates the performance of the ConvGRU network on the

ENSO region spatio-temporal sequence prediction task. Figures 2.4a, 2.4b,

and 2.4c include a sample comparison, starting from February 1120, between

the ground truth and the network’s prediction for the ENSO region. The

patterns in both the ground truth and the prediction exhibit high similar-

ity. Figure 2.4d presents the prediction skill assessed using RMSE and PC

metrics over the entire testing period as a function of lead time. The RMSE

1The codes and detailed information about the datasets can be found at the following
public GitHub repository: https://github.com/LingdaWang/ConvGRU_ENSO_Forecast.
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Figure 2.5: Performance of the ConvGRU network against other models on
predicting the Niño 3.4 index in the CCSM4 dataset during 1100-1300. (a)
PC, (c) RMSE, and (e) wMAPE, respectively, as a function of lead time,
compared to KAF, LIM, and CNNs. (b) PC, (d) RMSE, and (f) wMAPE,
respectively, as a function of lead time, compared to Seq2Seq with GRU
and LR.

values are averaged over all possible start points in the testing data split and

grid cells of the ENSO region. For PC, ground truths and predictions are

vectorized and concatenated over all possible start points in the testing data
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split. The RMSE and PC results demonstrate the high correlation and low

error characteristics of predictions generated by the ConvGRU network.

Next, the performance of the ConvGRU network is compared with exist-

ing models for predicting the Niño 3.4 index in the CCSM4 dataset. Here

Niño 3.4 indices mean SST anomalies relative to monthly climatology (aver-

age SST) of the ENSO region. The models selected for comparison include

KAF [28, 33, 34], LIM [28, 29, 30], CNN [35], Seq2Seq with GRU [172, 183],

and LR. KAF, LIM, and CNN utilize SST maps of the Pacific region as in-

put (predictor) variables, while Seq2Seq with GRU and LR use mean SSTs

of the ENSO region. The CNN model implementation is based on the Nature

paper [35], where three convolution layers and two max pooling layers are

included. For inputs of CNN models, CNN and CNN-ANOM utilize the orig-

inal SST maps and SST anomaly maps respectively, since the paper suggests

SST anomaly maps. Seq2Seq with GRU is implemented using the DeepAR

model [43] from the GluonTS package [47], with a 1-layer GRU network with

a 20-dimensional hidden state, and the condition and prediction ranges (J

and K) the same as the ConvGRU network. For LR, K = 24 separate mod-

els are trained for lead months 1-24, using J = 48 months lagged mean SSTs

of the ENSO region (including the current month) as input features.

Figure 2.5 illustrates the performance of the ConvGRU network compared

against other models in predicting the Niño 3.4 index in the CCSM4 dataset

over the testing period of 1100-1300, with the training period from 1 to

1099. A threshold of PC = 0.6 is commonly used to differentiate useful from

non-useful predictions [28]. The comparison demonstrates that although the

performance of the ConvGRU network deteriorates with longer lead times, it

consistently outperforms the competing models in terms of PC, RMSE, and

wMAPE, particularly in the long-term prediction range. When considering

the useful prediction range using the PC threshold of 0.6, the ConvGRU

network achieves the longest useful range of 18-19 months, surpassing KAF,

CNN, LIM, CNN-ANOM, Seq2Seq with GRU, and LR by 3-4, 5, 6-7, 7-8,

10-11, and 10-11 months, respectively.
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Figure 2.6: Performance averaged over 30 ensembles of the ConvGRU
network against other models on predicting the Niño 3.4 index in the
NOAA-GDFL-SPEAR dataset during 2051-2100. (a) PC, (b) RMSE, and
(c) wMAPE, respectively, as a function of lead time, compared to LIM,
CNN, Seq2Seq with GRU, and LR.

2.3.3 The NOAA-GDFL-SPEAR Simulation Dataset

The NOAA-GDFL-SPEAR dataset used in the numerical experiment is a

simulated monthly averaged SST dataset with a nominal resolution of 1◦×1◦

(longitude-latitude) from the GFDL SPEAR large ensembles. This includes

30-member ensembles of climate change simulations covering the period 1921-

2100 using the SPEAR-MED climate model [188]. The simulations are forced

with historical radiative forcings from 1921 to 2014 and SSP5-8.5 projected

radiative forcings [189, 190] from 2015 to 2100. The SST maps of the Pacific

and ENSO region are extracted from the longitude-latitude boxes 150◦E-

82◦W, 69◦S-59◦N (128× 128 grid), and 170◦-120◦W, 5◦S-5◦N (50× 10 grid),

respectively. Similar to the previous comparison, the SST maps in both

regions are down-sampled to 64×64 and 25×5 grids, reducing computational

30



60°N

60°S
120°E 1°W

Jan. 1987 Feb. 1987 Mar. 1987

Apr. 1987 May 1987 Jun. 1987

Jul. 1987 Aug. 1987 Sep. 1987

Oct. 1987 Nov. 1987 Dec. 1987

(a) Ground truth

60°N

60°S
120°E 1°W

Jan. 1987 Feb. 1987 Mar. 1987

Apr. 1987 May 1987 Jun. 1987

Jul. 1987 Aug. 1987 Sep. 1987

Oct. 1987 Nov. 1987 Dec. 1987

(b) Prediction

60°N

60°S
120°E 1°W

Jan. 1987 Feb. 1987 Mar. 1987

Apr. 1987 May 1987 Jun. 1987

Jul. 1987 Aug. 1987 Sep. 1987

Oct. 1987 Nov. 1987 Dec. 1987

(c) Diff.

2 4 6 8 10 12
Lead (months)

0.9929

0.9930

0.9931

0.9932

0.9933

0.9934

0.9935

PC

ConvGRU

(d) PC

2 4 6 8 10 12
Lead (months)

1.15

1.16

1.17

1.18

1.19

1.20

1.21

RM
SE

ConvGRU

(e) RMSE

Figure 2.7: Performance on the air temperature spatio-temporal sequence
prediction task. (a) Sample ground truth starting from January 1987. (b)
Sample prediction starting from January 1987. (c) Sample difference
between ground truth and prediction starting from January 1987. (d) PC
as a function of lead time computed in the testing period. (e) RMSE per
grid cell as a function of lead time computed in the testing period.

complexity and GPU memory usage.

The NOAA-GDFL-SPEAR dataset in each ensemble is divided into dis-
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joint training and testing data splits, with the training period covering years

1921-2050 and the testing period covering years 2051-2100. For experiments

on this dataset, a 3-layer ConvGRU network is implemented. The ConvGRU

network is trained using data from all 30 ensembles that end on or before

the year 2050 and then tested on data from all 30 ensembles starting from

the year 2051. The condition range (J) and the prediction range (K) are 48

and 24 months, respectively.

Similar to the previous comparison, the performance of the ConvGRU net-

work is compared to several existing models for predicting the Niño 3.4 index

in the NOAA-GDFL-SPEAR dataset. The selected models for comparison

include LIM, CNN, Seq2Seq with GRU, and LR. For LIM and LR, separate

models are trained for each ensemble in the dataset, since the NOAA-GDFL-

SPEAR dataset contains data from 30 ensembles, and the metrics computed

in the testing period are averaged over all ensembles. The CNN model follows

the same setting as that for the CCSM4 dataset. Seq2Seq with GRU utilizes

the DeepAR model to handle multiple time series with a single model, and

the detailed and fine-tuned settings remain the same in the CCSM4 dataset.

Figure 2.6 presents the performance averaged over 30 ensembles of the

ConvGRU network compared against other models in predicting the Niño

3.4 index in the NOAA-GDFL-SPEAR dataset over the testing period of

2051-2100, using the training period of 1921-2051. The results of the experi-

ments demonstrate that the ConvGRU network significantly outperforms the

competing models in terms of PC, RMSE, and wMAPE, with the longest use-

ful range of 12 months, surpassing CNN, LIM, Seq2Seq with GRU, and LR

by 1, 4-5, 4, and 7 months, respectively.

2.3.4 The NOAA-CIRES Air Temperature Reanalysis Dataset

The NOAA-CIRES air temperature dataset used in this experiment is a

monthly ensemble mean air temperature dataset at the 2m level with a nom-

inal resolution of approximately 2◦ × 2◦ (longitude-latitude). It is from the

NOAA-CIRES 20th-century reanalysis version 2c [191, 192], which provides

a comprehensive global atmospheric circulation dataset spanning the years

1850-2014. For the NOAA-CIRES air temperature dataset, we aim to demon-

strate that the ConvGRU network is capable of accurately predicting other
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climate and atmospheric spatio-temporal sequence beyond the ENSO re-

gion. For this experiment, the target region is the longitude-latitude box

120◦E− 1◦W, 60◦N− 60◦S (128× 64 grid), covering almost two-thirds of the

total global surface.

The NOAA-CIRES air temperature dataset is divided into disjoint training

and testing periods, with the training period covering the years 1851-1980 and

testing period covering 1981-2014. In this experiment, a 3-layer ConvGRU

network is implemented. The condition range (J) and the prediction range

(K) are set to 24 and 12 months, respectively.

Figure 2.7 illustrates the performance of the ConvGRU network on the air

temperature spatio-temporal sequence prediction task. Figures 2.7a, 2.7b,

and 2.7c presents a sample comparison starting from January 1987 between

the ground truth and the prediction, revealing a very similar pattern in

both the ground truth and the prediction. Figures 2.7d and 2.7e present

the prediction skill assessed using RMSE and PC, similar to Fig. 2.4, over

the entire testing data split and as a function of lead time. The PC result

demonstrates a significantly high correlation of over 99% between the ground

truth and the prediction within a prediction range of 12 months. The RMSE

ranges from approximately 1.1 ℃ to 1.2 ℃.
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CHAPTER 3

ROBUST NONPARAMETRIC
DISTRIBUTION FORECAST WITH

BACKTEST-BASED BOOTSTRAP AND
ADAPTIVE RESIDUAL SELECTION

3.1 Methodology

The proposed DF framework is composed of a backtester, a residual selec-

tor, and a PF model, as depicted in Figure 3.1. To summarize how it works:

During the training phase: 1. Backtest [45] is performed on the training data

with the PF model to build a collection of predictive residuals (Figure 3.2);

for covariates that need to be estimated for future time points (e.g., future

price of a product), their values can be sampled from estimated distributions

during backtest to account for the uncertainty in covariates. 2. The residual

selector is pre-specified or learned from the training data as a set of rules or

a separate machine learning model that selects the most relevant subset of

predictive residuals given a future data point based on their meta informa-

tion. 3. Lastly, the PF model is trained on the entire training data. During

the forecasting phase: 1. For each future data point of interest, the trained

PF model generates the PF. 2. The residual selector selects a subset of resid-

uals. 3. Lastly, random samples of residuals are drawn from the subset and

applied to the PF to obtain multiple bootstrap forecasts that provide the

empirical distribution, and sample quantiles of the bootstrap forecasts pro-

vide the quantile forecasts for arbitrary target quantiles. Essentially, we use

the empirical distribution of the selected predictive residuals from backtest

to estimate the distribution of the future predictive residuals and thus the

distribution of the future response variable.

3.1.1 Backtesting

Let D = {(Xt
i, Y

t
i )}

t=si,si+1,...,di
i=1,2,...,n be the training data, where Xt

i is the ma-

trix of covariates at time t, Y t
i is the response variable at time t, si is the
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Figure 3.1: Overview of the proposed DF framework. The backtester
generates a collection of predictive residuals; the residual selector selects a
subset of residuals for each future data point; the bootstrapping step
combines the PF and selected residuals to generate the DF.

first time point, and di is the last time point for time series i. For a non-

parametric distribution forecast, it suffices to estimate the conditional quan-

tiles Q̂
Y

di+ki
i Y

si:di
i ,X

si:di
i ,X

(di+1):(di+ki)
i

(τ) for arbitrary target quantile τ ∈ (0, 1),

where ki is the number of time points into the future. Backtest is essen-

tially a move-forward cross-validation that preserves the order in time for

time series data, where the test split is always further in time than the train-

ing split. Let the backtest start time and step size be a and l respectively.

For each split point j = a, a + l, a + 2l, . . . ,maxi(di) − 1, the training data

are divided into a training split Aj = {(Xt
i, Y

t
i ) ∈ D | t ≤ j} and a test split

Bj = {(Xt
i, Y

t
i ) ∈ D | t > j}; the PF model f̂j is trained on Aj, and predictive

residuals are computed as {Y t
i − f̂j(Y

si:j
i ,Xsi:j

i ,X
(j+1):t
i )|(Xt

i, Y
t
i ) ∈ Bj}. This

process generates a collection of predictive residuals E = {εti,j}i,j,t. For those
covariates that are not available in the future and need to be estimated, we

can use their historic estimates, sample from their estimated distributions,

or add simulated noise to create X̃t
i to replace Xt

i during backtest to account

for uncertainty in covariates.

3.1.2 Selecting Residuals

Common PF models typically assume that residuals are i.i.d. and indepen-

dent from the covariates and the PF itself [42]. However, such assumptions

do not always hold in practice for the predictive residuals. For example,

the variance of residuals can increase as we forecast further into the future

or as the magnitude of PF increases. To relax the commonly imposed in-

dependence assumption between residuals and covariates (or more generally
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Figure 3.2: Illustration of building a collection of predictive residuals with
backtest. The training split is used to train the PF model, and the test
split is used to compute the predictive residuals.

any meta information which can include the PF or other variables not in

the original covariates), an adaptive residual selector can be learned from

the training data to select a subset of residuals based on the meta infor-

mation of the predictive residuals from backtest and the future data point,

ĝ(E ,M,Mfuture), so that the selected residuals are conditionally i.i.d.. The

residual selector should ideally be based on the meta information that has

a non-negligible impact on the predictive residuals. We mention two op-

tions for learning the residual selector here: 1. Compute distance correlation

(which can detect both linear and non-linear dependence) [193] between the

predictive residuals from backtest and their corresponding meta information

to identify variables with the highest distance correlation to the residuals.

Then design rules (e.g., set simple thresholds) around these variables to select

residuals that have a different distribution from the distribution of the entire

collection of residuals, which can be verified by the Kolmogorov-Smirnov test

[194]. Note that if the residual selector has no impact, the selected residuals

should have the same distribution as the entire collection. 2. Fit a machine

learning model, such as a regression decision tree, to predict residuals from

their meta information, then apply the model to the meta information of

future data points to select the corresponding residuals. The performance

of this model can also be used to check dependence between meta informa-

tion and residuals – if the residuals are already independent from the meta

information pre-selection, then the model should perform poorly.
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3.1.3 Bootstrapping

We describe two formulae of generating bootstrap forecasts, backtest-additive

(BA) and backtest-multiplicative (BM). They can be applied to either itera-

tive or direct PF models (an iterative model recursively consumes the forecast

from the previous time point to forecast for the next, whereas a direct model

generates forecast for a future time point directly from covariates [195]). For

BA, to generate bootstrap forecasts for the next time point di + 1, after

obtaining the PF Ŷ di+1
i = f̂(Y si:di

i ,Xsi:di
i ,Xdi+1

i ) and the selected predictive

residuals from backtest G = ĝ(E ,M,Mdi+1
i ), random samples are drawn

from the selected residuals εb ∈ G for b = 1, 2, . . . , B, then the bootstrap

forecasts are given by Ŷ di+1
i,b,Add. = Ŷ di+1

i + εb. Quantile forecasts are obtained

by taking sample quantiles of the bootstrap forecasts. Generalizing to arbi-

trary future time point di+ki, for an iterative PF model, bootstrap forecasts

are recursively generated for the next time point until di + ki; for a direct

PF model, the calculation remains the same as 1-step forecast with di + 1

replaced by di + ki. Note that for a direct PF model, quantile forecasts can

be obtained by skipping the residual sampling step and adding the sample

quantiles of the selected residuals to the PF. The formula for BA is simi-

lar to the existing approach to bootstrapping predictive residuals [196, 197]

(while the backtest and residual selection steps are novel in BA). The per-

formance of BA can degrade if the variance of residuals increases with the

magnitude of the PF or if the magnitude of the future PF is very different

from the magnitude of the response variable seen during backtest. Hence we

also propose BM which scales the residuals based on the PF: After obtaining

the PF and the selected residuals in the same way as BA, the error ratios

are computed by dividing the extracted residuals over their corresponding

forecast (or response variable) during backtest, R = {εth,j/Ŷ t
h,j | εth,j ∈ G}; then

the bootstrap forecasts for the next time point are given by sampling rb ∈ R
and Ŷ di+1

i,b,Multi. = Ŷ di+1
i · (1 + rb). The rest remains the same.

3.1.4 Practical Considerations

Both the backtest step and the residual selection step can be efficiently par-

allelized across multiple CPU’s/GPU’s. The backtest step requires multiple

model training, but it is more efficient than the previous delete-xt approach
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of bootstrapping predictive residuals [196, 197] and can be done offline at

a lower frequency than updating the PF model. The only computational

overhead during inference time is the (optional) residual selection given the

PF, so the additional latency of obtaining DF is negligible. Furthermore,

once a residual collection from backtest is built, quantile forecast for any tar-

get quantile can be generated without re-running backtest or retraining the

PF model, whereas DF methods that explicitly minimize quantile loss typi-

cally require the target quantile to be specified before model training. The

backtest-based methods are also relatively interpretable: They retain the in-

terpretability of the underlying PF model if the PF model is interpretable;

even with a less interpretable PF model, one can check the predictive residual

distribution and model performance on the test split (and model coefficients

if applicable) during the backtest step to help identify which data points or

covariates tend to contribute to large predictive residuals and whether the

model has systematic bias during out-of-sample forecasting. The choices of

bootstrap formulae (BA vs BM), denominator of error ratios (backtest fore-

cast vs observed response variable), residual selector variation, and PF model

can be tuned as hyperparameters.

3.2 Experiments

Table 3.1: ACE comparison of different bootstrap DF approaches
integrated with different PF models.

Bootstrap\PF Ridge SVR RF NN
FR 0.102(−0%) 0.195(−0%) 0.207(−0%) 0.176(−0%)
FM 0.095(−7%) 0.218(+12%) 0.171(−17%) 0.125(−29%)
BA 0.069(−32%) 0.065(−67%) 0.055(−73%) 0.077(−56%)
BM 0.038(−63%) 0.061(−69%) 0.027(−87%) 0.048(−73%)

We conduct experiments on two real-world time-series datasets: an in-

house product sales dataset and the M4-hourly competition dataset [46, 47].

The product sales dataset consists of daily sales of 76 products between

01/01/2017 and 01/10/2021 and 147 covariates capturing information on

pricing, supply constraints, trend, seasonality, special events, and product

attributes. The standard ACE is used to evaluate the DF performance:
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The coverage (CO) of quantile forecast Ŷ t
i(τ) for target quantile τ over the

test set Dtest is defined as CO(Dtest; τ) = 1
|Dtest|

∑
Dtest

I{Y t
i ≤ Ŷ t

i(τ)}; and

ACE is defined as ACE(Dtest; τ) = |CO(Dtest; τ)− τ |. A 100-fold backtest is

used for evaluation, which is separate from the backtest used for computing

predictive residuals – in each training-test split for evaluation, the latter

half of the training split is used to perform a separate backtest to build the

predictive residual collection without using information from the test split

for a fair evaluation. The reported ACE is averaged across all training-test

splits, 24-week forecast horizon for product sales and 48-hour horizon for M4-

hourly, and the following range of target quantiles: τ = 0.1, 0.2, . . . , 0.9. For

experiments with deep learning models, the reported ACE is also averaged

across 10 trials due to the fluctuation in model performance.

Table 3.2: ACE comparison of backtest-based bootstrap integrated with the
median forecast vs the default DF.

DF\Model QLasso QGB DeepAR DFact MQCNN DSSM TFT
Default 0.188 0.119 0.102 0.098 0.092 0.136 0.067
Median + BA 0.114 0.078 0.100 0.067 0.078 0.124 0.058
Median + BM 0.039 0.036 0.104 0.070 0.071 0.112 0.060

Compared to other DF approaches, bootstrap approaches have the advan-

tage of extending any PF model to produce DF, which makes them easy

to adopt and able to potentially retain desired properties of the PF model.

Thus, the first experiment focuses on comparing the proposed BA and BM

against classic bootstrap approaches for DF: bootstrap with fitted residuals

(FR) [42] and bootstrap with fitted models (FM) [198, 197]. This exper-

iment is performed on the product sales dataset, as it contains covariates

which can accommodate the use of standard Machine Learning models as

direct PF models. A variety of PF models are used to assess the bootstrap

approaches’ robustness to the choice of PF model, including ridge regression

[199], support vector regression (SVR) [199], random forest (RF) [199], and

neural networks (NNs) [199]. The proposed bootstrap approaches outperform

the classic approaches for all PF models (Table 3.1).

The second experiment compares against other SOTA DF approaches,

including quantile lasso (QLasso) [199], quantile gradient boosting (QGB)

[199], DeepAR [43, 47], Deep Factors (DFact) [200, 47], MQ-CNN [201, 47],
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Table 3.3: ACE comparison of backtest-based bootstrap integrated with the
median forecast vs the default DF from DeepAR under different
pre-specified output distributions.

DF\Output Dist. Neg. Bin. Student’s t Normal Gamma Laplace Poisson
Default 0.102 0.192 0.162 0.138 0.114 0.134
Median + BA 0.100 0.169 0.116 0.157 0.094 0.128
Median + BM 0.104 0.165 0.111 0.156 0.088 0.125

deep state space models (DSSM) [44, 47], and temporal fusion transformers

(TFT) [202, 47]. Because the bootstrap approaches require an underlying

PF model, for a fair comparison we use the median forecast from each of

the aforementioned benchmarks as the PF models to be integrated with the

backtest-based bootstrap, so they share the same model architecture and hy-

perparameters. The comparison against QGB and QLasso is performed on

the product sales data and the comparison against the deep learning models

is performed on the M4-hourly data. The proposed bootstrap approaches

integrated with the median forecast outperform the default DF from the

benchmarks (Table 3.2).

The third experiment assesses the robustness of the proposed approaches

to model assumptions/hyperparameters. DeepAR requires the output dis-

tribution to be specified prior to the model learning its parameters. In this

experiment, the backtest-based bootstrap approaches integrated with the

median forecast are compared against the default DF from DeepAR under

a variety of output distribution assumptions on the M4-hourly data. The

proposed approaches outperform the default DF in 5 out of 6 distribution

settings (Table 3.3).

The median or mean forecast from the bootstrap approaches can be viewed

as the updated PF through bootstrap aggregating (Bagging). As an ensemble

output, the Bagging PF can be potentially more accurate than the original

PF. The fourth experiment evaluates the relative change in mean absolute

percentage error (MAPE) of the Bagging PF compared to the original PF

on the product sales data. The Bagging PF from the proposed approaches

achieves the greatest reduction in MAPE (Table 3.4) for all PF models; i.e.,

in addition to providing DF, the proposed approaches can also provide more

accurate PF. One explanation is that if a PF model has systematic bias

during backtest, its predictive residual distribution will reflect such bias, so

40



by design the median forecast will correct for the bias from backtest when

bootstrapping DF (Section 3.1.3).

Table 3.4: Relative change in MAPE for Bagging PF compared to the
original PF.

Bootstrap\PF Model Ridge SVR RF NN
FR +0.8% +6.5% +0.2% +0.7%
FM +0.4% +6.6% −3.8% +2.6%
BA −12.3% −21.0% −10.0% +1.5%
BM −22.1% −31.8% −5.3% −13.4%
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CHAPTER 4

NEARLY OPTIMAL ALGORITHMS FOR
PIECEWISE-STATIONARY CASCADING

BANDITS

4.1 Problem Formulation

4.1.1 Cascade Model and Cascading Bandits

CB [6], as a learning variant of CM, depicts the interaction between an agent

and a user over a length-T time horizon, in which the user’s preference is

learned. CM [51] explains the user’s behavior in a specific time slot t.

In CM, a user is presented with a K-item ranked list At := (a1,t, . . . , aK,t)

∈ ΠK(L) from L at time slot t, where L := {1, 2, . . . , L} is a ground set

containing L items (e.g., web pages or advertisements), and ΠK (L) is the

set of all K-permutations of the ground set L. CM can be parameterized

by an attraction probability vector wt = [wt(1), . . . ,wt(L)]
⊤ ∈ [0, 1]L. The

user browses the list At from the first item a1 in order, and each item ak

attracts the user to click it with probability wt(ak). The user will stop the

process after clicking the first attractive item. In particular, when an item

ak,t is clicked, it means that i) items from a1,t to ak−1,t are not attractive

to the user, and ii) items ak+1,t to aK,t are not browsed so whether they are

attractive to the user is unknown. Clearly, if no item is attractive, the user

will browse the whole list and click on nothing.

Building upon CM, a CB can be described by a tuple (L, T , {fℓ,t}ℓ∈L,t∈T ,
K), where T := {1, 2, . . . , T} collects all T time slots. Whether the user is

attracted by item ℓ at time slot t is actually a Bernoulli random variable Zℓ,t,

whose probability mass function (PMF) is fℓ,t. As convention, Zℓ,t = 1 indi-

cates item ℓ is attractive to the user. We also denote Zt := {Zℓ,t}ℓ∈L as all

the attraction variables of the ground set. Clearly, {fℓ,t}ℓ∈L,t∈T are parame-

terized by the attraction probability vectors {wt}t∈T , which are unknown to

the agent. Since CB is designed for stationary environments, the attraction
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probability vector wt is time-invariant, and thus can be further simplified as

w. CB poses a mild assumption on {fℓ,t}ℓ∈L,t∈T for simplicity.

Assumption 4.1. The attraction distributions {fℓ,t}ℓ∈L,t∈T are independent

both across items and time slots.

Per slot t, the agent recommends a list of K items At to the user based on

the feedback from the user up to time slot t − 1. The feedback at time slot

t refers to the index of the clicked item, given by

Ft =

∅, if no click,

argmink{1 ≤ k ≤ K : Zak,t,t = 1}, otherwise.

After the user browses the list and follows the protocol described by CM, the

agent observes the feedback Ft. Along with Ft is a zero-one reward indicating

whether there is a click

r (At,Zt) = 1−
K∏
k=1

(
1− Zak,t,t

)
, (4.1)

where r (At,Zt) = 0 if Ft = ∅. Then, this process proceeds to time slot

t+ 1. The goal of the agent is to maximize the expected cumulative reward

over the whole time horizon T . Noticing that Zℓ,ts are independent, the

expected reward at time slot t can be computed as E [r (At,Zt)] = r (At,w).

The optimal list A∗ remains the same for all time slots, which is the list

containing the K most attractive items.

4.1.2 Piecewise-Stationary Cascading Bandits

The stationarity assumption on CB limits its applicability for real world

applications, as users tend to change their preferences as time goes on [53].

This fact leads to piecewise-stationary CB. Consider a piecewise-stationary

CB with N segments, where the attraction probabilities of items remain

identical per segment. Mathematically, N can be written as

N = 1 +
T−1∑
t=1

I{∃ℓ ∈ L s.t. fℓ,t ̸= fℓ,t+1}, (4.2)
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where I{·} is the indicator function, and a change-point is the time slot t that

satisfies ∃ℓ ∈ L s.t. fℓ,t ̸= fℓ,t+1. Hence it is clear that there are N−1 change-
points in the piecewise-stationary CB considered. These change-points are

denoted by ν1, . . . , νN−1 in a chronological manner. Specifically, ν0 = 0 and

νN = T are introduced for consistency. For the ith piecewise-stationary seg-

ment t ∈ [νi−1+1, νi], f
i
ℓ and wi(ℓ) denote the attraction distribution and the

expected attraction of item ℓ, respectively, which are again unknown to the

agent. Attraction probability vector wi = [wi(1), . . . ,wi(L)]⊤ is introduced

to collect wi(ℓ)s.

In a piecewise-stationary CB, agent interactions are the same as CB. The

agent’s policy can be evaluated by its expected cumulative reward, or equiv-

alently its expected cumulative regret:

R(T ) = E

[
T∑
t=1

R (At,wt,Zt)

]
, (4.3)

where the expectation E[·] is taken with respect to a sequence of Zt and the

corresponding At. Here, R(At,wt,Zt) = r(A∗
t ,wt) − r(At,Zt) is the regret

at time slot t with

A∗
t = argmax

At∈ΠK(L)
r (At,wt)

being the optimal list that maximizes the expected reward at time slot t.

The regret defined in (4.3) is also known as switching regret, which is widely

adopted in piecewise-stationary bandit [203, 57, 61, 60, 62]. Since switching

regret is measured with respect to the optimal piecewise-stationary policy, the

optimal list A∗
t for each time slot is no longer time-invariant. This leads to a

much harder algorithm design problem since the non-stationary environment

should be properly coped with.

4.2 Algorithms

This section presents adaptive approaches for piecewise-stationary CB using

an efficient change-point detector.
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Algorithm 4.1: GLRT Change-Point Detector:
GLRT(X1, . . . , Xn; δ)
Require: observations X1, . . . , Xn and confidence level δ
1: Compute the GLR statistic GLR(n) according to (4.4) and the threshold β(n, δ)

according to (4.5)
2: if GLR(n) ≥ β(n, δ) then
3: Return True
4: else
5: Return False
6: end if

4.2.1 Generalized Likelihood Ratio Test

As the adaptive approach is adopted, a brief introduction about change-

point detection is given in this section. Sequential change-point detection is of

fundamental importance in statistical sequential analysis, see e.g., [204, 205,

206, 207, 208, 209]. However, the aforementioned approaches typically rely

on the knowledge of either pre-change or post-change distribution, rendering

barriers for the applicability in piecewise-stationary CB.

In general, with pre-change and post-change distributions unknown, devel-

oping algorithms with provable guarantees is challenging. Our solution relies

on the GLRT that is summarized under Algorithm 4.1. Compared with ex-

isting change-point detection methods that have provable guarantees [61, 60],

advantages of GLRT are threefold: i) Fewer tunable parameters. The only re-

quired parameter for GLRT is the confidence level of change-point detection

δ, while CUSUM [61] and CMSW [60] have three and two parameters to be

manually tuned, respectively. ii) Less prior knowledge needed. GLRT does

not require the information on the smallest magnitude among the change-

points, which is essential for CUSUM. iii) Better performance. The GLRT

is more efficient than CUSUM and CMSW in the averaged detection time.

As shown in the numerical experiments in Example 4.1, GLRT has approxi-

mately 20% and 50% improvement over CUSUM and CMSW, respectively.

Next, the GLRT is formally introduced. Suppose we have a sequence of

Bernoulli random variables {Xt}nt=1 and aim to determine if a change-point

exists as fast as we can. This problem can be formulated as a parametric
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sequential test of the following two hypotheses:

H0 : ∃µ0 : X1, . . . , Xn
i.i.d∼ Bern(µ0),

H1 : ∃µ0 ̸= µ1, τ ∈ [1, n− 1] : X1, . . . , Xτ
i.i.d∼ Bern(µ0)

and Xτ+1, . . . , Xn
i.i.d∼ Bern(µ1),

where Bern(µ) is the Bernoulli distribution with mean µ. The GLR statistic

is

GLR(n) = sup
s∈[1,n−1]

[s×KL (µ̂1:s, µ̂1:n) + (n− s)×KL (µ̂s+1:n, µ̂1:n)], (4.4)

where µ̂s:s′ is the empirical mean of observations fromXs toXs′ , and KL(x, y)

is Kullback–Leibler (KL) divergence of two Bernoulli distributions,

KL(x, y) = x log

(
x

y

)
+ (1− x) log

(
1− x

1− y

)
.

By comparing GLR(n) in (4.4) with the threshold β(t, δ), one can decide

whether a change-point appears for a length n sequence, where

β(t, δ) = 2G
(
log(3t

√
t/δ)

2

)
+ 6 log(1 + log t), (4.5)

and G(·) has the same definition as that in [210, (13)]. The choice of δ is

influences the sensitivity of the GLRT. For example, a larger δ makes the

GLRT response faster to a change-point, but increases the probability of

false alarm.

The efficiency of a change-point detector for a length n sequence is evalu-

ated via its detection time,

τ = inf{t ≤ n : GLR(t) ≥ β(t, δ)}.

To better understand the performance of GLRT against CUSUM and

CMSW, it is instructive to use an example.

Example 4.1 (Efficiency of GLRT). Consider a sequence of Bernoulli ran-

dom variables {Xt}nt=1 with n = 4000, where X1, · · · , X2000 are generated

from Bern(0.2) and the remaining ones are generated from Bern(0.8), as
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Figure 4.1: Expectations of Xt’s with n = 4000 and expected detection
time of GLRT, CUSUM, and CMSW.

shown in Figure 4.1 (red line). By setting δ = 1/n for GLRT and choosing

parameters of CUSUM and CMSW as recommended in [61] and [60], the

average detection times after 100 Monte Carlo trials are 2024.55 ± 6.8451

(GLRT, green line), 2030.25± 6.74 (CUSUM, blue line), and 2045.59± 4.48

(CMSW, black line), respectively. In a nutshell, GLRT improves about 20%

over CUSUM and 50% over CMSW.

4.2.2 The GLRT Based CB Algorithms

Leveraging GLRT as the change-point detector, the proposed algorithms,

GLRT-CascadeUCB and GLRT-CascadeKL-UCB, are presented in Algorithm 4.2.

On a high level, three phases comprise the proposed algorithms.

• Phase 1 : The forced uniform exploration to ensure that sufficient sam-

ples are gathered for all items to perform the GLRT detection (Algo-

rithm 4.1).

• Phase 2 : The upper confidence bound (UCB) based exploration (UCB

or Kullback-Leibler UCB(KL-UCB)) to learn the optimal list on each

piecewise-stationary segment.

• Phase 3 : The GLRT change-point detection (Algorithm 4.1) to monitor

if global restart should be triggered.

47



Besides the time horizon T , the ground set L, the number of items in

list K, the proposed algorithms only require two parameters p and δ as in-

puts. The probability p is used to control the portion of uniform exploration

in Phase 1, and it appears also in other bandit algorithms for piecewise-

stationary environments [60, 61]. While the confidence level δ is the only

parameter required by GLRT. Hence, the proposed algorithms are more prac-

tical compared with existing algorithms [60, 61], since: i) no prior knowledge

on change-point-dependent parameter is needed; ii) fewer parameters are

required. The choices of δ and p will be clear in Section 4.3.

In Algorithm 4.2, we denote the last detection time as τ . From slot τ

to current slot, let nl denote the number of observations for ℓth item, and

ŵ(ℓ) its corresponding sample mean. The algorithm determines whether

to perform a uniform exploration or a UCB-based exploration depending on

whether line 4 of Algorithm 4.2 is satisfied, which ensures the fraction of time

slots performing the uniform exploration phase is about p. If the uniform

exploration is triggered, the first item in the recommended list At will be

item a := (t − τ) mod ⌊L
p
⌋, and the remaining items in the list are chosen

uniformly at random (line 5), which ensures item a will be observed by the

user. If UCB-based exploration is adopted at time slot t, the algorithms will

choose K items (line 7) with K largest UCB indices,

At = arg max
A∈ΠK(L)

r (A,UCB or UCBKL) , (4.6)

which will be defined in (4.7) and (4.8). By recommending the list At and

observing the user’s feedback Ft (line 9), we update the statistics (line 11)

and perform the GLRT detection (line 12). If a change-point is detected, we

set nℓ = 0 for all ℓ ∈ L, and τ = t (line 13). Finally, the UCB indices of each

item are computed as follows (line 18),

UCB(ℓ) = ŵ(ℓ) +

√
3 log(t− τ)

2nℓ

, (4.7)

UCBKL(ℓ) = max{q ∈ [ŵ(ℓ), 1] : nℓ ×KL(ŵ(ℓ), q) ≤ g(t− τ)}, (4.8)

where g(t) = log t + 3 log log t, and ŵ(ℓ) = 1
nℓ

∑nℓ

n=1Xℓ,n. Notice that (4.7)

is the UCB indices of GLRT-CascadeUCB, and (4.8) is the UCB indices of

GLRT-CascadeKL-UCB. For the intuitions behind, we refer the readers to [211,
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Algorithm 4.2: The GLRT-CascadeUCB and GLRT-CascadeKL-UCB

Algorithms
Require: The time horizon T , the ground set L, K, exploration probability p > 0, and

confidence level δ > 0
1: Initialization: τ ← 0 and nℓ ← 0, ∀ℓ ∈ L
2: for all t = 1, 2, . . . , T do
3: a← (t− τ) mod ⌊Lp ⌋
4: if a ≤ L then
5: Choose At such that a1,t ← a and a2,t, . . . , aK,t are chosen uniformly at random
6: else
7: Compute the list At follows (4.6)
8: end if
9: Recommend the list At to user, and observe feedback Ft

10: for all k = 1, . . . , Ft do
11: ℓ← ak,t, nℓ ← nℓ + 1, Xℓ,nℓ

← I{Ft = k},
and ŵ(ℓ) = 1

nℓ

∑nℓ

n=1 Xℓ,n

12: if GLRT(Xℓ,1, . . . , Xℓ,nℓ
; δ) = True then

13: nℓ ← 0, ∀ℓ ∈ L, and τ ← t
14: end if
15: end for
16: for ℓ = 1, · · · , L do
17: if nℓ ̸= 0 then
18: Compute UCB(ℓ) according to (4.7) for GLRT-CascadeUCB or UCBKL(ℓ)

according to (4.8) for GLRT-CascadeKL-UCB
19: end if
20: end for
21: end for

Proof of Theorem 1] and [212, Proof of Theorem 2].

4.3 Theoretical Results

The theoretical guarantees of the proposed algorithms, GLRT-CascadeUCB

and GLRT-CascadeKL-UCB, will be derived in this section. Specifically, the

upper bounds on the regret of both proposed algorithms are developed in Sec-

tions 4.3.1 and 4.3.2. A minimax regret lower bound for piecewise-stationary

CB is established in Section 4.3.3. We further discuss our theoretical findings

in Section 4.3.4.

Without loss of generality, for the ith piecewise-stationary segment, the

ground set L is first sorted in decreasing order according to attraction prob-

abilities, that is wi(si(1)) ≥ wi(si(2)) ≥ · · · ≥ wi(si(L)), for all si(ℓ) ∈ L.
The optimal list at ith segment is thus all the permutations of the list

A∗
i = {si(1), . . . , si(K)}. The item ℓ∗ is optimal if ℓ∗ ∈ {si(1), . . . , si(K)},
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otherwise an item ℓ is called suboptimal. To simplify the exposition, the

gap between the attraction probabilities of the suboptimal item ℓ and the

optimal item ℓ∗ at ith segment is defined as:

∆i
ℓ,ℓ∗ = wi(ℓ∗)−wi(ℓ).

Similarly, the largest amplitude change among items at change-point νi is

defined as

∆i
change = max

ℓ∈L

∣∣wi+1(ℓ)−wi(ℓ)
∣∣ , (4.9)

with ∆0
change = maxℓ∈L |w1(ℓ)|. We have the following assumption for the

theoretical analysis.

Assumption 4.2. Define di = di (p, δ) = ⌈ 4Lβ(T,δ)

p(∆i
change)

2 +
L
p
⌉ and assume νi −

νi−1 ≥ 2max{di, di−1}, ∀i = 1, . . . , N − 1, with νN − νN−1 ≥ 2dN−1.

Note that Assumption 4.2 is standard in a piecewise-stationary environ-

ment, and identical or similar assumptions are made in other change-detection

based bandit algorithms [61, 60, 62] as well. It requires the length of the

piecewise-stationary segment between two change-points to be large enough.

Assumption 4.2 guarantees that with high probability, all the change-points

are detected within the interval [νi +1, νi + di], which is equivalent to saying

all change-points are detected correctly (low probability of false alarm) and

quickly (low detection delay). This result is formally stated in Lemma 4.3.

In our numerical experiments, the proposed algorithms work well even when

Assumption 4.2 does not hold (see Section 4.4).

4.3.1 Regret Upper Bound for GLRT-CascadeUCB

Upper bound on the regret of GLRT-CascadeUCB is as follows.

Theorem 4.1. Suppose that Assumptions 4.1 and 4.2 are satisfied, GLRT-Ca-

scadeUCB guarantees

R(T ) ≤
N∑
i=1

C̃i︸ ︷︷ ︸
(a)

+ Tp︸︷︷︸
(b)

+
N−1∑
i=1

di︸ ︷︷ ︸
(c)

+3NTLδ︸ ︷︷ ︸
(d)

,

where C̃i =
∑L

ℓ=K+1
12

∆i
si(ℓ),si(K)

log T + π2

3
L.
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Theorem 4.1 indicates that the upper bound on the regret of GLRT-Cascad-

eUCB is incurred by two types of costs that are further decomposed into four

terms. Terms (a) and (b) upper bound the costs of UCB-based exploration

and uniform exploration, respectively. The costs incurred by the change-

point detection delay and the incorrect detection are bounded by terms (c)

and (d). Corollary 4.1 follows directly from Theorem 4.1.

Corollary 4.1. Let ∆min
change = mini≤N−1∆

i
change denote the smallest magni-

tude of any change-point on any item, and ∆min
opt = mini≤N ∆i

si(K+1),si(K) be

the smallest magnitude of a suboptimal gap on any one of the stationary seg-

ments. The regret of GLRT-CascadeUCB is established by choosing δ = 1
T
and

p =
√

NL log T
T

:

R(T ) = O

(
N(L−K) log T

∆min
opt

+

√
NLT log T(
∆min

change

)2
)
. (4.10)

As a direct result of Theorem 4.1, the upper bound on the regret of

GLRT-CascadeUCB in Corollary 4.1 consists of two terms where the first term

is incurred by the UCB-based exploration and the second term is from the

change-point detection component. As T becomes larger, the regret is dom-

inated by the cost of the change-point detection component, implying the

regret is O(
√
NLT log T/(∆min

change)
2). Similar phenomena can also be found in

piecewise-stationary MAB [61, 60, 62].

The proof outline of Theorem 4.1 is as follows. We can decompose R(T )
into good events that GLRT-CascadeUCB reinitializes the algorithm quickly

and precisely after all change-points and bad events that either large detec-

tion delays or false alarms happen. We first upper bound the regret of the

stationary scenario and the detection delays of good events, respectively. It

can be shown that with high probability, all change-points can be detected

correctly and quickly, so that the regret incurred by bad events is rather

small. By summing up all regrets from good events and bad events, an

upper bound on the regret of GLRT-CascadeUCB is then developed.
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4.3.2 Regret Upper Bound for GLRT-CascadeKL-UCB

This section deals with the upper bound on the T -step regret of GLRT-Cas-

cadeKL-UCB.

Theorem 4.2. Suppose that Assumptions 4.1 and 4.2 are satisfied, GLRT-Ca-

scadeKL-UCB guarantees

R(T ) ≤ T (N − 1)(L+ 1)δ︸ ︷︷ ︸
(a)

+ Tp︸︷︷︸
(b)

+
N−1∑
i=1

di︸ ︷︷ ︸
(c)

+NK log log T +
N−1∑
i=0

D̃i︸ ︷︷ ︸
(d)

,

where D̃i is a term depending on log T and the suboptimal gaps. Detailed

expression can be found in (4.12) in the Section 4.6.

Similarly, the upper bound on the regret of GLRT-CascadeKL-UCB in The-

orem 4.2 can be decomposed into four different terms where (a) is incurred

by the incorrect change-point detections, (b) is the cost of the uniform ex-

ploration, (c) is incurred by the change-point detection delay, and (d) is the

cost of the KL-UCB based exploration.

Corollary 4.2. Choosing the same δ and p as in Corollary 4.1, GLRT-Casca-

deKL-UCB has same order of regret upper bound as (4.10).

We sketch the proof for Theorem 4.2 as follows, and the detailed proofs

are presented in Section 4.6. By defining the events U and HT as the algo-

rithm performing uniform exploration and the change-points can be detected

correctly and quickly, we can first bound the cost of uniform exploration U
and cost of incorrect and slow detection of change-points HT . Then, we

can divide the regret R(T ) into different piecewise-stationary segments. By

bounding the cost of detection delays and the KL-UCB based exploration,

the upper bound on regret is thus established.

4.3.3 Minimax Regret Lower Bound

In this section, we derive a minimax regret lower bound for piecewise-stationary

CB which is tighter than Ω(
√
T ) proved in [56]. The proof technique is sig-

nificantly different from [56].
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Theorem 4.3. If L ≥ 3 and T ≥MN (L−1)2

L
, then for any policy, the worst-

case regret is at least Ω(
√
NLT ), where M = 1/log 4

3
, and Ω(·) notation hides

a constant factor that is independent of N , L, and T .

The high-level idea is constructing a randomized hard instance appropriate

for the piecewise-stationary CB setting in which per time slot there is only one

item with highest click probability, and the click probabilities of remaining

items are the same. When the distribution change occurs, the best item

changes uniformly at random. For this instance, in order to lower bound the

regret, it suffices to upper bound the expected numbers of appearances of

the optimal item in the list. We then apply a change of measure technique to

upper bound this expectation. One key step is to apply the data processing

inequality for KL divergence to upper bound the discrepancy of feedback Ft

under change of distribution.

This lower bound is the first characterization involving N , L, and T . It in-

dicates our proposed algorithms are nearly order-optimal within a logarithm

factor
√
log T .

4.3.4 Discussion

Corollaries 4.1 and 4.2 reveal that by properly choosing the confidence level

δ and the uniform exploration probability p, the regrets of GLRT-CascadeUCB

and GLRT-CascadeKL-UCB can be upper bounded by

R(T ) = O
(√

NLT log T
)
,

where O(·) notation hides the gap term ∆min
change and the lower order term

N(L−K) log T/∆min
opt . Note that compared to CUSUM in [61, Liu et al., 2018]

and CMSW in [60, Cao et al., 2019], the tuning parameters are fewer and do

not require the smallest magnitude among the change-points ∆min
change as shown

in Corollary 4.1. Moreover, parameter δ and p follow simple rules as shown

in Corollary 4.1, while complicated parameter tuning steps are required in

CUSUM and CMSW.

The upper bounds on the regret of GLRT-CascadeUCB and GLRT-Cascade-

KL-UCB are improved over state-of-the-art algorithms CascadeDUCB and Casc-

adeSWUCB in [56, Li et al., 2019] either in the dependence on L or both L and
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T , as their upper bounds are O(L
√
NT log T ) and O(L

√
NT log T ), respec-

tively. In real-world applications, both L and T can be huge. For example,

L and T are in the millions in web search, which reveals the significance of

the improved L dependence in our bounds. Compared to recent works on

piecewise-stationary MAB [62] and combinatorial MAB (CMAB) [77] that

adopt GLRT as the change-point detector, the problem setting considered

herein is different. In MAB, only one selected item rather than a list of items

is allowed per time slot. Notice that although CMAB [213, 214, 215] or non-

stationary CMAB [77] also allow a list of items, they have full feedback on

all K items under semi-bandit setting.

4.4 Numerical Experiments

In this section, numerical experiments on both synthetic and real-world

datasets are carried out to validate the effectiveness of proposed algorithms.

Four baseline algorithms are chosen for comparison, where CascadeUCB1 [6]

and CascadeKL-UCB [6] are nearly optimal algorithms to handle stationary

CB; while CascadeDUCB [56] and CascadeSWUCB [56] cope with piecewise-

stationary CB through a passively adaptive manner. In addition, two ora-

cle algorithms, Oracle-CascadeUCB1 and Oracle-CascadeKL-UCB, that have

access to change-point times are also selected for comparison. In particular,

the oracle algorithms restart when a change-point occur. Based on the theo-

retical analysis by [56], we choose ξ = 0.5, γ = 1−0.25/
√
T for CascadeDUCB

and choose τ = 2
√
T log T for CascadeSWUCB. For GLRT-CascadeUCB and

GLRT-CascadeKL-UCB, we set δ = 1/T and p = 0.1
√
N log T/T .

4.4.1 Synthetic Dataset

In this experiment, let L = 10 andK = 3. We consider a simulated piecewise-

stationary environment setup as follows: i) the expected attractions of the

top K items remain constant over the whole time horizon; ii) in each even

piecewise-stationary segment, three suboptimal items are chosen randomly

and their expected attractions are set to be 0.9; iii) in each odd piecewise-

stationary segment, we reset the expected attractions to the initial state. In

this experiment, we set the length of each piecewise-stationary segment to
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Figure 4.2: Click rate of each item of synthetic dataset with T = 25000,
L = 10 and N = 10.

Figure 4.3: Expected cumulative regrets of different algorithms on synthetic
dataset.

be 2500 and choose N = 10, which is a total of 25000 steps. Figure 4.2 is a

detailed depiction of the piecewise-stationary environment.

Figure 4.3 reports the T -step cumulative regrets of all the algorithms by

taking the average of the regrets over 100 Monte Carlo simulations. The

results show that the proposed GLRT-CascadeUCB and GLRT-CascadeKL-UCB

achieve better performances than other algorithms and are very close to the

oracle algorithms. Compared with the best existing algorithm, GLRT-Cascad-

eUCB achieves a 20% reduction of the cumulative regret and this fraction is

33% for GLRT-CascadeKL-UCB, which is consistent with difference of empirical

results between passively adaptive approach and actively adaptive approach

in MAB. Notice that although CascadeDUCB seems to capture the change-
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Figure 4.4: Click rate of each item of Yahoo! dataset with T = 90000,
L = 6 and N = 9.

points, the performance is even worse than algorithms designed for stationary

CB. TThere are two possible reasons: i) The theoretical result shows that

CascadeDUCB is worse than other algorithms for piecewise-stationary CB by a
√
log T factor; ii) the time horizon T is not long enough. It is worth mention-

ing that our experiment on this synthetic dataset violates Assumption 4.2,

as it would require more than 105 time slots for each piecewise-stationary

segment. Surprisingly, the proposed algorithms are capable of detecting all

the change-points correctly with high probability and sufficiently fast in our

experiments.

4.4.2 Yahoo! Dataset

In this section, we adopt the benchmark dataset for the evaluation of bandit

algorithms published by Yahoo!1. This dataset, using binary values to indi-

cate if there is a click or not, contains user click log for news articles displayed

in the Featured Tab of the Today Module on Yahoo! [216], where each item

corresponds to one article. We pre-process the dataset by adopting the same

method as [60, Cao et al., 2019], where L = 6, K = 2 and N = 9. To make

the experiment nontrivial, several modifications are applied to the dataset:

i) the click rate of each item is enlarged by 10 times; ii) the time horizon

1Yahoo! Front Page Today Module User Click Log Dataset on
https://webscope.sandbox.yahoo.com

56



0 1 2 3 4 5 6 7 8 9

Time 10
4

0

1000

2000

3000

4000

E
x
p

e
c
te

d
 C

u
m

u
la

ti
v
e
 R

e
g

re
t

CascadeUCB1

CascadeKL-UCB

CascadeDUCB

CascadeSWUCB

GLRT-CascadeUCB

GLRT-CascadeKL-UCB

Oracle-CascadeUCB1

Oracle-CascadeKL-UCB

Figure 4.5: Expected cumulative regrets of different algorithms on Yahoo!
dataset.

is reduced to T = 90000, which is shown in Figure 4.4. Figure 4.5 presents

the cumulative regrets of all algorithms by averaging 100 Monte Carlo trials

which shows the regrets of our proposed algorithms are just slightly above

the oracle algorithms and significantly outperform other algorithms. The

reason that algorithms designed for stationarity perform better in the first

three segments is the optimal list does not change.

4.5 Proof of Theorem 4.1

4.5.1 Proofs of Auxiliary Lemmas

In this section, we present auxiliary lemmas which are used to prove Theo-

rem 4.1, as well as their proofs. We start by upper bounding the regret under

the stationary scenario with N = 1, ν0 = 0, and ν1 = T .

Lemma 4.1. Under stationary scenario (N = 1), the regret of GLRT-Cascad

eUCB is upper bounded as

R(T ) ≤ TP (τ1 ≤ T ) + pT + C̃1,

where τ1 is the first detection time.

Proof of Lemma 4.1. Denote Rt := R (At,wt,Zt) as the regret of the learn-

ing algorithm at time slot t, where At is the recommended list at time slot t
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and wt is the associated expected attraction vector at time slot t. By further

denoting as τ1 the first change-point detection time of the Bernoulli GLRT,

the regret of GLRT-CascadeUCB can be decomposed as:

R(T ) = E

[
T∑
t=1

RtI{τ1 ≤ T}

]
+ E

[
T∑
t=1

RtI{τ1 > T}

]
(a)

≤ TP (τ1 ≤ T ) + E

[
T∑
t=1

RtI{τ1 > T}

]
︸ ︷︷ ︸

(b)

,

where inequality (a) holds due to the fact that Rt ≤ 1 and E [I{τ1 ≤ T}] =
P (τ1 ≤ T ).

In order to bound the term (b), we denote the event U as the algo-

rithm being in the forced uniform exploration phase and let Et := {∃ℓ ∈
L s.t. |w1(ℓ) − ŵt(ℓ)| ≥

√
3 log t/(2nℓ,t)} be the event that ŵt(ℓ) is not in

the high-probability confidence interval around w1(ℓ), where w1(ℓ) is ex-

pected attraction of item ℓ in the first piecewise-stationary segment, ŵt(ℓ)

is the sample mean of item ℓ up to time slot t, and nℓ,t is the number of

times that item ℓ is observed up to time slot t. Term (b) can be further

decomposed as

E

[
T∑
t=1

RtI{τ1 > T}

]
= E

[
T∑
t=1

RtI{U}

]
+ E

[
T∑
t=1

RtI{τ1 > T, Et−1,U}

]

+ E

[
T∑
t=1

RtI{τ1 > T, E t−1,U}

]
(c)

≤ Tp+ E

[
T∑
t=1

RtI{τ1 > T, Et−1,U}

]
︸ ︷︷ ︸

(d)

+ E

[
T∑
t=1

RtI{τ1 > T, E t−1,U}

]
︸ ︷︷ ︸

(e)

,

where inequality (c) is because of the fact that Rt ≤ 1 and the uniform

exploration probability is p. Term (d) can be bounded by applying the
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Chernoff-Hoeffding inequality,

E

[
T∑
t=1

RtI{τ1 > T, Et−1,U}

]

≤
L∑

ℓ=1

T∑
t=1

t∑
nℓ=1

P
(
|w1(ℓ)− ŵt(ℓ)| ≥

√
3 log t/(2nℓ)

)
≤ 2

L∑
ℓ=1

T∑
t=1

t∑
nℓ=1

e−3 log t ≤ π2L

3
.

Furthermore, term (e) can be bounded as follows,

E

[
T∑
t=1

RtI{τ1 > T, E t−1,U}

]
(f)

≤ pT +
L∑

ℓ=K+1

12

∆1
s1(ℓ),s1(K)

log T,

where the inequality (f) follows the proof of Theorem 2 in [6]. By summing

all terms, we prove the result.

Then we bound the false alarm probability P (τ1 ≤ T ) in Lemma 4.1 under

previously mentioned stationary scenario.

Lemma 4.2. Consider the stationary scenario, with confidence level δ ∈
(0, 1) for the Bernoulli GLRT, and we have that

P (τ1 ≤ T ) ≤ Lδ.

Proof of Lemma 4.2. Define τℓ,1 as the first change-point detection time of

the ℓth item. Then, τ1 = minℓ∈L τℓ,1. Since the global restart is adopted by

applying the union bound we have that

P (τ1 ≤ T ) ≤
L∑

ℓ=1

P (τℓ,1 ≤ T ) .

Recall the GLR statistic defined in (4.4), and plug it into P (τℓ,1 ≤ T ), we

have that

P (τℓ,1 ≤ τ) ≤ P[∃(s, n) ∈ N2, n ≤ nℓ, s < n :

sKL
(
µ̂1
ℓ,1:s, µ̂

1
ℓ,1:n

)
+ (n− s)KL

(
µ̂1
ℓ,s+1:n, µ̂

1
ℓ,1:n

)
> β(n, δ)]
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≤ P[∃(s, n) ∈ N2, n ≤ T, s < n :

sKL
(
µ̂1
ℓ,1:s, µ̂

1
ℓ,1:n

)
+ (n− s)KL

(
µ̂1
ℓ,s+1:n, µ̂

1
ℓ,1:n

)
> β(n, δ)]

(a)

≤ P[∃(s, n) ∈ N2, n ≤ T, s < n :

sKL
(
µ̂1
ℓ,1:s,w

1(ℓ)
)
+ (n− s)KL

(
µ̂1
ℓ,s+1:n,w

1(ℓ)
)
> β(n, δ)]

(b)

≤
T∑

s=1

P[∃s < n : sKL
(
µ̂1
ℓ,1:s,w

1(ℓ)
)

+ (n− s)KL
(
µ̂1
ℓ,s+1:n,w

1(ℓ)
)
> β(n, δ)]

≤
T∑

s=1

P[∃r ∈ N : sKL
(
µ̂1
ℓ,s,w

1(ℓ)
)

+ rKL
(
µ̂1
k,r,w

1(ℓ)
)
> β(s+ r, δ)]

(c)

≤
T∑

s=1

δ

3s3/2

(d)

≤
∞∑
s=1

δ

3s3/2
≤ δ,

where µ̂1
ℓ,s:s′ is the mean of the rewards generated from the distribution f 1

ℓ

with expected reward w1(ℓ) from time slot s to s′. Inequality (a) is because

of the fact that

sKL (µ̂1:s, µ̂1:n) + (n− s)KL (µ̂s+1:n, µ̂1:n)

= inf
λ∈[0,1]

[sKL (µ̂1:s, λ) + (n− s)KL (µ̂s+1:n, λ)] ;

inequality (b) is because of the union bound; inequality (c) is because of

the Lemma 10 in [62]; and inequality (d) holds due to the Riemann zeta

function ζ(x) and when x = 3/2, ζ(3/2) < 2.7. Thus, we conclude by

P (τ1 ≤ T ) ≤ Lδ.

Next, we define the event C(i) that all the change-points up to ith have

been detected quickly and correctly:

C(i) = {∀j ≤ i, τj ∈ {νj + 1, · · · , νj + dj}} . (4.11)

Lemma 4.3 below shows C(i) happens with high probability.

Lemma 4.3. (Lemma 12 in [62]) When C(i−1) holds, GLRT with confidence

level δ is capable of detecting the change point νi correctly and quickly with
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high probability, that is,

P
[
τi ≤ νi|C(i−1)

]
≤ Lδ, and P

[
τi ≥ νi + di|C(i−1)

]
≤ δ,

where τi is the detection time of ith change-point.

In the next lemma, we bound the expected detection delay with the good

event C(i) holds.

Lemma 4.4. The expected delay given C(i) is:

E
[
τi − νi|C(i)

]
≤ di.

Proof. By the definition of C(i), the conditional expected delay is obviously

upper bounded by di.

4.5.2 Proof of Theorem 4.1

Proof. Define good events Ei = {τi > νi} and Di = {τi ≤ νi + di}, ∀1 ≤ i ≤
N − 1. Recall the definition of the good event C(i) that all the change-points
up to ith one have been detected correctly and quickly in (4.11), and we can

find that C(i) = E1∩D1∩· · ·∩Ei∩Di. Again, we denote Rt := R (At,wt,Zt)

as the regret of the learning algorithm at time slot t. By first decomposing

the expected cumulative regret with respect to the event E1, we have that

R(T ) = E

[
T∑
t=1

RtI{E1}

]
+ E

[
T∑
t=1

RtI{E1}

]

≤ E

[
T∑
t=1

RtI{E1}

]
+ TP(E1)

(a)

≤ E

[
ν1∑
t=1

RtI{E1}

]
+ E

[
T∑

t=ν1+1

Rt

]
+ TLδ

(b)

≤ C̃1 + ν1p+ E

[
T∑

t=ν1+1

Rt

]
︸ ︷︷ ︸

(c)

+TLδ,

where the inequality (a) is because that P(E1) can be bounded using Lemma 4.2

and inequality (b) holds due to Lemma 4.1. To bound the term (c), by ap-
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plying the law of total expectation, we have that

E

[
T∑

t=ν1+1

Rt

]
≤ E

[
T∑

t=ν1+1

Rt

∣∣ C(1)]+ T (1− P(E1 ∩D1))

= E

[
T∑

t=ν1+1

Rt

∣∣ C(1)]+ T (P(E1 ∪D1))

≤ E

[
T∑

t=ν1+1

Rt

∣∣ E1 ∩D1

]
︸ ︷︷ ︸

(d)

+T (L+ 1)δ,

where P(E1∪D1) is acquired by applying the union bound on the Lemma 4.3.

Then, we turn to the term (d), by further splitting the regret,

E

[
T∑

t=ν1+1

Rt

∣∣ E1 ∩D1

]
= E

[
T∑

t=ν1+1

Rt

∣∣ C(1)]

≤ E

[
T∑

t=τ1+1

Rt

∣∣ C(1)]+ E

[
τ1∑

t=ν1+1

Rt

∣∣ C(1)]︸ ︷︷ ︸
(e)

≤ E

[
T∑

t=ν1+1

Rt

∣∣ C(1)]+ d1,

where term (e) is bounded by applying the Lemma 4.4 and the fact that

Rt ≤ 1. Thus,

R(T ) ≤ E

[
T∑

t=ν1+1

Rt

∣∣ C(1)]+ C̃1 + ν1p+ d1 + 3TLδ.

Similarly,

E

[
T∑

t=ν1+1

Rt

∣∣ C(1)] ≤ E

[
T∑

t=ν1+1

RtI{E2}
∣∣ C(1)]+ TP(E2|C(1))

≤ E

[
ν2∑

t=ν1+1

RtI{E2}
∣∣ C(1)]+ E

[
T∑

t=ν2+1

Rt

∣∣ C(1)]+ TLδ
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≤ C̃2 + (ν2 − ν1)p+ E

[
T∑

t=ν2+1

Rt

∣∣ C(1)]︸ ︷︷ ︸
(f)

+TLδ,

where P(E2|C(1)) directly follows Lemma 4.3. To bound term (f),

E

[
T∑

t=ν2+1

Rt

∣∣ C(1)]

≤ E

[
T∑

t=ν2+1

Rt

∣∣ E2 ∩D2 ∩ C(1)
]
+ T (1− P(E2 ∩D2|C(1)))

= E

[
T∑

t=ν2+1

Rt

∣∣ E2 ∩D2 ∩ C(1)
]
+ TP(E2 ∪D2|C(1))

≤ E

[
T∑

t=ν2+1

Rt

∣∣ C(2)]︸ ︷︷ ︸
(g)

+T (L+ 1)δ,

where P(E2∪D2|C(1)) is acquired by applying the union bound on Lemma 4.3.

For term (g), we have

E

[
T∑

t=ν2+1

Rt

∣∣ C(2)] ≤ E

[
T∑

t=τ2+1

Rt

∣∣ C(2)]+ E

[
τ2∑

t=ν2+1

Rt

∣∣ C(2)]

≤ E

[
T∑

t=ν2+1

Rt

∣∣ C(2)]+ d2.

Wrapping up previous steps, we have that

R(T ) ≤ E

[
T∑

t=ν2+1

Rt

∣∣ C(2)]+ C̃1 + C̃2 + ν2p+ d1 + d2 + 6TLδ.

Recursively, the upper bound on the regret of GLRT-CascadeUCB is given by

R(T ) ≤
N∑
i=1

C̃i + Tp+
N−1∑
i=1

di + 3NTLδ.
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4.5.3 Proof of Corollary 4.1

Proof. By applying the upper bound on G(x) that G(x) ≤ x+ 4 log(1 + x+√
2x) if x ≥ 5 to di, we have that

di ≤
4L

p
(
∆min

change

)2
β(T, δ)

+
2L

p

(a)

≤ 4L

p
(
∆min

change

)2 [log(3T 3/2

δ

)
+ 8 log

(
1 +

log(3T
3/2

δ
)

2
+

√
log

(
3T 3/2

δ

))

+ 6 log(1 + log T )] +
2L

p

(b)

≤

20L log T+o(L log T )

(∆min
change)

2 + 2L

p
≲

L log T

p
(
∆min

change

)2 ,
where (a)(b) hold when log(3T 5/2) ≥ 10 (equals to T ≥ 36). By plugging di

into Theorem 4.1, we have that,

R(T ) ≲ N(L−K) log T

∆min
opt

+ Tp+
NL log T

p
(
∆min

change

)2 + 3NL.

Combining the above analysis we conclude the corollary.

4.6 Proof of Theorem 4.2

Proof of Theorem 4.2. We start by defining the good event HT that all the

change-points have been detected correctly and quickly,

HT := {∀i = 1, . . . , N − 1, τi ∈ {νi + 1, . . . , νi + di}},

And let Et,i := {∃ℓ ∈ {si(1), . . . , si(K)} s.t. wi(ℓ) > UCBKL,t(ℓ)} be the

event that the expected attraction of at least one optimal item is above the

UCB index at time slot t and t is in ith piecewise-stationary segment, where

UCBKL,t(ℓ) is the KL-UCB index of ℓ item computed at time slot t. The

regret of GLRT-CascadeKL-UCB can be decomposed as

R(T ) ≤ E

[
T∑
t=1

RtI{U}

]
+ E

[
T∑
t=1

RtI{U ,HT}

]
+ E

[
T∑
t=1

RtI{U ,HT}

]
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≤ pT + TP(HT )︸ ︷︷ ︸
(a)

+
N−1∑
i=1

di + E

[
ν1∑
t=1

RtI{U ,HT , Et−1,1}

]
︸ ︷︷ ︸

(b)

+
N−1∑
i=1

E

[
νi+1∑

t=τi+1

RtI{U ,HT , Et−1,i+1}

]
︸ ︷︷ ︸

(c)

+ E

[
ν1∑
t=1

RtI{U ,HT , E t−1,1}

]
︸ ︷︷ ︸

(d)

+
N−1∑
i=1

E

[
νi+1∑

t=τi+1

RtI{U ,HT , E t−1,i+1}

]
︸ ︷︷ ︸

(e)

.

Bound Term (a): Recall the definition of C(i) and applying the union

bound,

P(HT ) ≤
N−1∑
i=1

P(τi /∈ {νi + 1, . . . , νi + di}|C(i−1))

≤
N−1∑
i=1

P(τi ≤ νi|C(i−1)) +
N−1∑
i=1

P(τi ≥ νi + di|C(i−1))

≤ (N − 1)(L+ 1)δ,

where the last inequality is due to Lemma 4.3.

Bound Terms (b) and (c): By plugging in the event Et,i, we have that

E

[
νi+1∑

t=τi+1

RtI{U ,HT , Et−1,i+1}

]

≤
K∑

ℓ∗=1

E

[
I{C(i)}

νi+1∑
t=τi+1

I{nst(ℓ∗),tKL(ŵt(st(ℓ
∗)),wt(st(ℓ

∗))) ≥ g(t− τi)}

]

≤ KE

[
νi+1∑

t=τi+1

I{nst(ℓ∗),tKL(ŵt(st(ℓ
∗)),wt(st(ℓ

∗))) ≥ g(t− τi)}|C(i)
]

= KE

[
νi+1∑

t=τi+1

I{nst(ℓ∗),tKL(ŵt(st(ℓ
∗)),wi(st(ℓ

∗))) ≥ g(t− τi)}|C(i)
]

≤ K

νi+1−τi∑
t′=1

P(∃s ≤ t′ : sKL(µ̂s,w
i(st(ℓ

∗))) ≥ g(t′))
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≤ K

T∑
t=1

1

t log t
≤ K log log T ,

where the first inequality is due to HT ∈ C(i); ŵ(ℓ) is the mean of the rewards

of item ℓ after the most recent detection time τ and up to time slot t; and

the last inequality follows directly from Lemma 2 in [212]. Note that (b) can

be upper bounded similar to the procedures of bounding (c).

Bound Terms (d) and (e): Here, according to the proof of Theorem 3

in [6], (d) and (e) can be bounded as

E

[
ν1∑
t=1

RtI{U ,HT , E t−1,1}

]
or E

[
νi+1∑

t=τi+1

RtI{U ,HT , E t−1,i+1}

]

≤
L∑

ℓ=K+1

(1 + ϵ)∆i+1
si+1(ℓ),si+1(K)(1 + log(1/∆i+1

si+1(ℓ),si+1(K))

KL(wi+1(si+1(ℓ)),wi+1(si+1(K)))
(log T + 3 log log T )

+
C2(ϵ)

d
β(ϵ)
i

,

where C2(ϵ) and β(ϵ) follow the same definition in [6]. Denote D̃i as

D̃i =
L∑

ℓ=K+1

(1 + ϵ)∆i+1
si+1(ℓ),si+1(K)(1 + log(1/∆i+1

si+1(ℓ),si+1(K)))

KL(wi+1(si+1(ℓ)),wi+1(si+1(K)))

× (log T + 3 log log T ) +
C2(ϵ)

d
β(ϵ)
i

. (4.12)

Summing up all terms, and we have that

R(T ) ≤ T (N − 1)(L+ 1)δ + Tp+
N−1∑
i=1

di +KN log log T +
N−1∑
i=0

D̃i.

4.7 Proof of Theorem 4.3

Proof of Theorem 4.3. The first step in deriving the minimax lower bound

is to construct a randomized ‘hard instance’ as follows. Partition the time

horizon T intoN blocks and name them B1, . . . , BN , where the lengths of first
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N−1 blocks are ⌈T/N⌉ and the length of the last block is T−(N−1)⌈T/N⌉.
In each segment, L − 1 items follow Bernoulli distribution with probability

1/2 and only one item follows Bernoulli distribution with probability 1/2+ϵ,

where ϵ is a small positive number. Let ℓ∗i = argmaxℓ∈L w
i(ℓ), i.e, the item

with largest click probability during Bi. The distributions of the ℓ∗i ’s are

defined as follows:

• ℓ∗1 ∼ Uniform({1, . . . , L}).

• for i ≥ 2, ℓ∗i ∼ Uniform(L \ ℓ∗i−1).

Note that for this randomized instance, the regret for any policy π is

Rπ(T ) = ϵ(1/2)K−1Eπ[
N∑
i=1

∑
t∈Bi

I{ℓ∗i ̸∈ At}].

The expectation is taken with respect to the policy π and this randomized

instance. From the above decomposition, we see that to lower bound the

regret for any policy π, it suffices to upper bound Eπ[
∑N

i=1

∑
t∈Bi

I{ℓ∗i ∈
At}], the expectation of total number of recommendations to the item with

largest click probability. Before we lower bound this quantity, we need some

additional notation. Let P ℓ
i be the joint distribution of {At, Ft}t∈Bi

given

the policy π and the ℓth item being the item with largest click probability,

P 0
i be the joint distribution of {At, Ft}t∈Bi

given the policy π and every item

following the Bernoulli distribution with probability 1/2. Furthermore, let

Eℓ
i [·] and E0

i [·] as their respective expectations. Let N ℓ
i be the total numbers

of appearances of item ℓ in the recommendation list during Bi. In order to

lower bound the target expectation, we need the following lemma.

Lemma 4.5. For any segment Bi and any ℓ ∈ L, we have

Eℓ
i [N

ℓ
i ] ≤ E0

i [N
ℓ
i ] +

|Bi|
2

√
E0

i [N
ℓ
i ] log(

1

1− 4ϵ2
).

Proof of Lemma 4.5. The proof is similar to Lemma A.1 in [217]. The key

difference is we apply the data processing inequality for KL divergence to

upper bound the discrepancy of the partial feedback Ft’s under different
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distributions.

Eℓ
i [N

l
i ]− E0

i [N
ℓ
i ]

(a)

≤ |Bi|
2

∥∥P ℓ
i − P 0

i

∥∥
1

(b)

≤ |Bi|
2

√
2DKL(P 0

i ||P ℓ
i )

=
|Bi|
2

√
2
∑
t∈Bi

DKL(P 0
i (Ft|At)||P ℓ

i (Ft|At))

(c)

≤ |Bi|
2

√
2
∑
t∈Bi

DKL(P 0
i (Zt|At)||P ℓ

i (Zt|At))

=
|Bi|
2

√
E0

i [N
ℓ
i ] log(

1

1− 4ϵ2
),

where DKL(·) is the KL divergence, (a) is due to the boundedness of N l
i , (b)

is due to Pinsker’s inequality, (c) is due to data processing inequality for KL

divergence.

Apply Lemma 4.5 for Bi and sum over all items to get∑
ℓ∈L

Eℓ
i [N

ℓ
i ] ≤

∑
ℓ∈L

E0
i [N

ℓ
i ] +

∑
ℓ∈L

|Bi|
2

√
E0

i [N
ℓ
i ] log(

1

1− 4ϵ2
)

≤ |Bi|+
|Bi|
2

√
|Bi|L log(

1

1− 4ϵ2
), (4.13)

where the last inequality is due to
∑

ℓ∈L E0
i [N

ℓ
i ] = |Bi| and Jensen’s inequal-

ity. Then we are able to lower bound the regret for any policy π.

Rπ(T ) = ϵ(1/2)K−1

(
T − Eπ[

N∑
i=1

∑
t∈Bi

I{ℓ∗i ∈ At}]

)
(a)

≥ (1/2)K−1ϵ

(
T − 1

L−1
(

N∑
i=1

|Bi|+
|Bi|
2

√
L|Bi| log 1

1−4ϵ2

)

= (1/2)K−1

(
ϵT − ϵT

L−1
− ϵT

2(L−1)

√
LT

N
log 1

1−4ϵ2

)
(b)

≥ (1/2)K−1

(
ϵT
2
− ϵ2T

K−1

√
LT
N

log 4
3

)
.

where (a) is due to inequality (4.13), and (b) holds by L ≥ 3, 4ϵ2 ≤ 1
4
and

log 1
1−x
≤ 4 log(4

3
)x for all x ∈ [0, 1

4
]. Finally, setting ϵ = L−1

4
√

TL log ( 4
3
)
finishes

the proof.
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CHAPTER 5

ADVERSARIAL LINEAR CONTEXTUAL
BANDITS WITH GRAPH-STRUCTURED

SIDE OBSERVATIONS

5.1 Problem Formulation

Notation. In Chapter 5, we use ∥x∥2 to denote the Euclidean norm of

vector x; ⟨x, y⟩ stands for the inner product of x and y. We also define

Et [·] = E
[
·
∣∣Ft−1

]
as the expectation given the filtration Ft−1.

We consider an adversarial linear contextual bandit problem with graph-

structured side observations between an agent with a finite action set V :=

{1, . . . , L} and its adversary. At each time step t = 1, 2, . . . , T , the interaction

steps between the agent and its adversary are repeated, which are described

as follows. At the beginning of time step t, the feedback graph Gt(V, Et) and
a loss vector θi,t ∈ Rd for each action i ∈ V are chosen by the adversary

arbitrarily, where Gt can be directed or undirected, V is the node set (the

same as the action set V ), and Et is the edge set. Note that Gt and θi,t are not

disclosed to the agent at this time. After observing a context Xt ∈ Rd, the

agent chooses an action It ∈ V to play based on Xt, the previous interaction

history, and possibly some randomness in the policy, and incurs the loss

ℓt(Xt, It) = ⟨Xt, θIt,t⟩. Unlike recently proposed adversarial linear contextual

bandits [81], where only the played action It discloses its loss ℓt(Xt, It), here

we assume all losses in a subset SIt,t ⊆ V are disclosed after It is played,

where SIt contains It and its neighboring nodes in the feedback graph Gt.

More formally, we have that Si,t := {j ∈ V
∣∣i t−→ j ∈ Et or j = i}, where i t−→ j

indicates an edge from node i to node j in a directed graph or an edge between

i and j in an undirected graph at time t. These observations except for that

of action It are called side observations in graphical bandits [71]. In addition,

an oracle provides extra observations for all i ∈ SIt (see Assumption 5.2 for

details). Before proceeding to time step t + 1, the adversary discloses Gt to

the agent.
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Remark 5.1. The way the adversary discloses Gt in this chapter is called

the uninformed setting, where Gt is disclosed after the agent’s decision

making. Contrarily, a simpler setting from the agent’s perspective is called

the informed setting [72], where Gt is disclosed before the agent’s decision

making. The uninformed setting is the minimum requirement for our problem

to capture the benefits of side observations [218, Theorem 1].

Furthermore, we have the following assumptions for above interaction

steps.

Assumption 5.1 (i.i.d. contexts). The context Xt ∈ Rd is drawn from a dis-

tribution D independently from the choice of loss vectors and other contexts,

where D is known by the agent in advance .

Assumption 5.2 (extra observation oracle). Assume at each time step t,

there exists an oracle that draws a context X̃t ∈ Rd from D independently

from the choice of loss vectors and other contexts, and discloses X̃t together

with the losses l̃t(X̃t, i) =
〈
X̃t, θi,t

〉
for all i ∈ SIt,t to the agent.

Assumption 5.3 (nonoblivious adversary). The adversary can be nonobliv-

ious, who is allowed to choose Gt and θi,t,∀i ∈ V at time t according to

arbitrary functions of the interaction history Ft−1 before time step t. Here,

Ft := σ(Xs, X̃s, Is, Gs, {ℓs(Xs, i)}i∈Ss , {ℓ̃s(X̃s, i)}i∈Ss ,∀s ≤ t) is the filtration

capturing the interaction history up to time step t.

Remark 5.2. Assumption 5.1 is standard in the literature of adversarial

contextual bandits [81, 219, 220, 221]. In fact, it has been shown that if

both the contexts and loss vectors are chosen by the adversary, no algorithm

can achieve a sublinear regret [81, 220]. The oracle in Assumption 5.2 is

mainly adopted from the proof perspective, and its role will be clear in the

analysis. In real-world applications, this oracle can be realized. Consider the

viral marketing problem for an example. After the user and her/his followers

complete the questionnaire and get the offers, they will probably purchase

the products and leave online reviews after they experience those products.

Then, the extra observations can be provided by those reviews. Assump-

tion 5.3 indicates θt,i is a random vector with Et [θi,t] = θi,t, and a similar

result holds for Gt. Note that a bandit problem with a nonoblivious adver-

sary is harder than that with an oblivious adversary [222, 223] that chooses

all loss vectors and feedback graphs before the start of the interactions.
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The goal of the agent is to find a policy that minimizes its expected cu-

mulative loss. Equivalently, we can adopt the expected cumulative (pseudo)

regret, defined as the maximum gap between the expected cumulative loss

incurred by the agent and that of a properly chosen policy set Π,

RT = max
πT∈Π

E

[
T∑
t=1

〈
Xt, θIt,t − θπT (Xt),t

〉]

= max
πT∈Π

E

[
T∑
t=1

∑
i∈V

(πa
t (i|Xt)− πT (i|Xt)) ⟨Xt, θi,t⟩

]
,

where the expectation is taken over the randomness of the agent’s policy and

the contexts. It is widely acknowledged that competing with a policy that

uniformly chooses the best action in each time step t while incurring an o(T )

regret is hopeless in the adversarial setting [222, 223]. Thus, we adopt the

fixed policy set Π proposed for adversarial linear contextual bandits [81],

Π :=
{
πT

∣∣all policies πT : Rd 7→ V
}
, (5.1)

where the decision given by πT ∈ Π only depends the current received context

Xt. The best policy π∗
T ∈ Π is the one that satisfies the following condition

π∗
T (i|x) = I

{
i = argmin

j∈V

T∑
t=1

⟨x,E[θj,t]⟩

}
, ∀x ∈ Rd,

which can be derived from the regret definition as shown in [81].

Before presenting our algorithms, we will further introduce several com-

mon assumptions and definitions in linear contextual bandits and graphical

bandits. We assume the context distribution D is supported on a bounded

set with each x ∼ D satisfying ∥x∥2 ≤ σ for some positive σ. Furthermore,

we assume the covariance Σ = E[XtX
⊤
t ] of D to be positive definite with its

smallest eigenvalue being λmin > 0. As for the loss vector θi,t, we assume

that ∥θi,t∥2 ≤ L for some positive L for all i, t. Additionally, the loss ℓt(x, t)

is bounded in [−1, 1]: |ℓt(x, i)| ≤ 1 for all x ∼ D, i, and t. We have the

following graph-theoretic definition from [72, 74, 78].

Definition 5.1 (Independence number). The cardinality of the maximum

independent set of a graph Gt is defined as the independence number and

denoted by α(Gt), where an independence set of Gt = (Vt, Et) is any subset

71



V ′
t ∈ Vt such that no two nodes i, j ∈ V ′

t are connected by an edge in Et. Note
that α(Gt) ≤ L in general. Without ambiguity, we use α(G) := 1

T

∑T
t=1 α(Gt)

to denote the average independence number of the feedback graphs {Gt}Tt=1

in remainder of Chapter 5.

5.2 The EXP3-LGC-U Algorithm

Algorithm 5.1: EXP3-LGC-U
Require: : Learning rate η > 0, uniform exploration rate γ ∈ (0, 1), covariance

Σ, and action set V

1: for t = 1, . . . , T do

2: Feedback graph Gt and loss vectors {θi,t}i∈V are generated but not

disclosed

3: Observe Xt ∼ D, and for all i ∈ V , set

wt(Xt, i) = exp

(
−η

t−1∑
s=1

〈
Xt, θ̂i,s

〉)
(5.2)

4: Play action It drawn according to distribution

πa
t (Xt) := (πa

t (1
∣∣Xt), . . . , π

a
t (L

∣∣Xt)), where

πa
t (i
∣∣Xt) = (1− γ)

wt(Xt, i)∑
j∈V wt(Xt, j)

+
γ

L
(5.3)

5: Observe pairs (i, ℓt(Xt, i)) for all i ∈ SIt,t, and disclose feedback graph Gt

6: Extra observation oracle: observe X̃t ∼ D and pairs (i, ℓ̃t(X̃t, i)) for all

i ∈ SIt,t

7: For each i ∈ V , estimate the loss vector θi,t as

θ̂i,t =
I{i ∈ SIt,t}
qt(i
∣∣Xt)

Σ−1X̃tℓ̃t(X̃t, i), (5.4)

where qt(i
∣∣Xt) = πa

t (i
∣∣Xt) +

∑
j:j

t−→i
πa
t (j
∣∣Xt)

8: end for

In this section, we introduce our first simple yet efficient algorithm, EXP3-

LGC-U, for both directed and undirected feedback graphs, which is the abbre-

viation for “EXP3 for Linear Graphical Contextual bandits with Uniform

exploration”. Detailed steps of EXP3-LGC-U are presented in Algorithm 5.1.

The upper bounds for the regret of EXP3-LGC-U are developed in Section 5.2.1.
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We further discuss our theoretical findings on EXP3-LGC-U in Section 5.2.2.

The proofs for the Claims, Theorems, and Corollaries in this section are

deferred to Section 5.4.

The core of our algorithm, similar to many other algorithms for adver-

sarial bandits, is designing an appropriate estimator of each loss vector and

using those estimators to define a proper policy. Following the EXP3-based

algorithms, we apply an exponentially weighted method and play an action

i with probability proportional to exp(−η
∑t−1

s=1⟨Xt, θ̂i,s⟩) (see (5.2)) at time

step t, where η is the learning rate. More precisely, a uniform exploration γ

is needed for the probability distribution of drawing action (see (5.3)). The

uniform exploration is to control the variance of the loss vector estimators,

a key step in our analysis. At this point, the key remaining question is how

to design a reasonable estimator for each loss vector θi,t. The answer can be

found in (5.4), which takes advantage of both the original observations and

the extra observations from the oracle. Similar to EXP3-SET, our algorithm

uses importance sampling to construct the loss vector estimator θ̂i,t with con-

trolled variance. The term qt(i|Xt) in the denominator in (5.4) indicates the

probability of observing the loss of action i at time t, which is simply the

sum of all πa
t (j|Xt) for all j that is connected to i at time t. The reason

we use ℓ̃(X̃t, i) and X̃t instead of ℓ(X̃t, i) and Xt in constructing loss vector

estimator θ̂i,t can be partly interpreted in the following two claims.

Claim 5.1. The estimator θ̂i,t of the loss vector θi,t in (5.4) is an unbiased

estimator given the interaction history Ft−1 and Xt, for each i ∈ V and t,

i.e., Et

[
θ̂i,t

∣∣∣Xt

]
= θi,t.

It is straightforward to show that the estimator θ̂i,t in (5.4) is unbiased

w.r.t. Et [·] and E [·] by applying the law of total expectation. However, if we

use Xt and ℓ(Xt, i) to construct θ̂i,t in (5.4), it will only be unbiased w.r.t.

Et [·] and E [·], but not Et [ ·|Xt]. This observation turns out to be essential

in our analysis, which leads to the following immediate result of Claim 5.1.

Claim 5.2. Let πT : Rd 7→ V be any policy in Π and θ̂i,t follows (5.4).
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Suppose πa
t is determined by Ft−1 and Xt, we have

E

[
T∑
t=1

∑
i∈V

(πa
t (i|Xt)− πT (i|Xt)) ⟨Xt, θi,t⟩

]

= E

[
T∑
t=1

∑
i∈V

(πa
t (i|Xt)− πT (i|Xt))

〈
Xt, θ̂i,t

〉]
. (5.5)

Remark 5.3. The advantages and properties of Claim 5.2 are summarized

as follows: i) By applying the policy produced by EXP3-LGC-U and the best

policy in the fixed policy set Π in (5.1), the term in the right hand side of

(5.5) is exactly the regret RT of EXP3-LGC-U. Given this property, the known

loss vector estimate θ̂i,t, instead of the unknown true loss vector θi,t, can be

applied directly to our analysis of the regret. ii) Claim 5.2 is not confined to

EXP3-LGC-U and can be applied to other loss vector estimators that adopt

different construction methods and any other benchmark policy, as long as

Claim 5.1 is satisfied. iii) Based on Claim 5.2, some techniques in proving

classical EXP3 can be utilized in our analysis of the regret.

Remark 5.4. Claim 5.2 exhibits several differences between adversarial con-

textual bandits and classical adversarial MAB. First, the benchmark policy

πT (·|Xt) depends on the contexts in adversarial contextual bandits, while the

benchmark policy is the best fixed action in hindsight in classical adversarial

MAB. Second, consider the regret definition of classical adversarial MAB,

RMAB
T = maxj∈V E

[∑T
t=1(

∑
i∈V πa,MAB

t (i)ℓi,t)− ℓj,t

]
, where πa,MAB

t (i) is the

policy produced by an EXP3-based algorithm and ℓi,t is the loss for action i at

time step t. Since no context exists here, it is natural to design an estimator

ℓ̂i,t of ℓi,t that is unbiased w.r.t. Et [·], and a similar result as Claim 5.2 can

be proven. However, with the contexts, if the loss vector estimators are only

unbiased w.r.t. Et [·] rather than Et [ ·|Xt], Claim 5.2 will not hold as shown

in the proof of Claim 5.2 in Section 5.4.2.

Remarks 5.3 and 5.4 explain the need of adopting the extra observation

oracle in EXP3-LGC-U and the way the loss vector estimator θ̂i,t is constructed.
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5.2.1 Regret Analysis for EXP3-LGC-U

Our main theoretical justification for the performance of EXP3-LGC-U sum-

marized in Theorem 5.1.

Theorem 5.1. For any positive η ∈ (0, 1), choosing γ = ηLσ2/λmin, the

expected cumulative regret of EXP3-LGC-U satisfies:

Rt ≤
logL

η
+

2ηLσ2

λmin

T + ηd

T∑
t=1

E [Qt] ,

where Qt = α(Gt) if Gt is undirected, and Qt = 4α(Gt) log(4L
2/(α(Gt)γ)) if

Gt is directed.

The proof of Theorem 5.1 is mainly based on the following Lemma 5.1,

which is established on Claim 5.2.

Lemma 5.1. Supposing
∣∣∣η 〈Xt, θ̂i,t

〉∣∣∣ ≤ 1, the expected cumulative regret of

EXP3-LGC-U satisfies

RT ≤
logL

η
+ 2γT + ηE

[
T∑
t=1

∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉2]
. (5.6)

The proof of Lemma 5.1 is detailed in Section 5.4.3. The last term in the

right side of (5.6) can be further bounded using graph-theoretic results in

[74, Lemma 10] and [73, Lemma 5], which are restated in Section 5.4.

Remark 5.5. According to (5.13) in the proof of Theorem 5.1 in Section 5.4,

if the extra observation oracle is not adopted, we will have a higher-order term

E
[
X⊤

t Σ
−1XtX

⊤
t Σ

−1Xt

]
. In general, it is hard to specify the relationship

between this term and the dimension of contexts d. This explains why we

adopt the oracle in the algorithm.

We have the following two corollaries based on Theorem 5.1, where the

notations follow [72, 74].

Corollary 5.1. For the undirected graph setting, if α(Gt) ≤ αt for t =

1, . . . , T , then setting η =
√

logL

2Lσ2T/λmin+d
∑T

t=1 αt
gives

RT = O


√√√√(2Lσ2T/λmin + d

T∑
t=1

αt

)
logL

 .
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Corollary 5.2. For the directed graph setting, if α(Gt) ≤ αt for t = 1, . . . , T ,

and supposing that T is large enough so that log(1/γ) ≥ 1, then setting

η = (2Lσ2T/λmin + 4d
∑T

t=1 αt)
− 1

2 gives:

RT = O


√√√√2Lσ2T/λmin + 4d

T∑
t=1

αt log(LdT )

 .

5.2.2 Discussion

Corollaries 5.1 and 5.2 reveal that by properly choosing the learning rate

η and the uniform exploration rate γ, the regret of EXP3-LGC-U can be

upper bounded by O(
√
(L+ α(G)d)T logL) in the undirected graph set-

ting, and O(
√

(L+ α(G)d)T log(LdT )) in the directed graph setting. Com-

pared with state-of-the-art algorithms for adversarial linear contextual ban-

dits, EXP3-LGC-U has tighter regret upper bounds in the extreme case when

the feedback graph Gt is a fixed edgeless graph (α(G) = L), as [81] shows

O(5T 2/3(Ld logL)1/3) for RobustLinEXP3 and O(4
√
T +
√
dLT logL(3+

√
log T )) for RealLinEXP3. It is easily verified that the dependencies on d

and T in the regrets of EXP3-LGC-U match with the best existing algorithm

RealLinEXP3. Furthermore, the dependence on L of EXP3-LGC-U is matching

with the lower bound Ω(
√

α(G)T ) for graphical bandits [71], which improves

over that of RealLinEXP3 in general cases. Moreover, our result is also better

than algorithms designed for adversarial contextual bandits with arbitrary

class of policies [219, 220, 221], which are not capable of guaranteeing an

O(
√
T ) regret.

In addition, [81] is different from ours in the following respects: i) loss

vector estimator construction, and ii) proof techniques. First, the estimator

in [81] is only unbiased w.r.t. Et [·] rather than Et [ ·|Xt]. Second, their proof

is conducted on an auxiliary online learning problem for a fixed context X0

with L actions (See [81, Lemmas 3 and 4] for details).

5.3 The EXP3-LGC-IX algorithm

In this section, we present another efficient algorithm, EXP3-LGC-IX, for a

special class of problems when the support of θi,t and Xt is non-negative,
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and elements of Xt are independent. The motivation for such a setting still

comes from the viral marketing problem. Suppose the agent has a question-

naire (context) of some product, which contains true/false questions that are

positively weighted. In this case, the answers of users (loss vectors) will be

vectors that contain only 0/1 entries. Under the linear payoff assumption,

the loss is non-negative. EXP3-LGC-IX, which is the abbreviation for “EXP3

for LinearGraphical Contextual bandits with Implicit eXploration”, has the

same regret upper bound for both directed and undirected graph settings, as

shown in Section 5.3.1. The proofs for the Claims, Theorems, and Corollaries

in this section are deferred to Section 5.5.

Algorithm 5.2: EXP3-LGC-IX
Require: Learning rate ηt > 0, implicit exploration rate βt ∈ (0, 1), covariance

Σ, and action set V .

1: for t = 1, . . . , T do

2: Feedback graph Gt and loss vectors {θi,t}i∈V are generated but not

disclosed

3: Observe Xt ∼ D, and play action It drawn according to distribution

πa
t (Xt) := (πa

t (1
∣∣Xt), . . . , π

a
t (L

∣∣Xt)) with

πa
t (i
∣∣Xt) =

wt(Xt, i)∑
j∈V wt(Xt, j)

, (5.7)

where wt(Xt, i) =
1
L exp

(
−ηt

∑t−1
s=1

〈
Xt, θ̂i,s

〉)
4: Observe pairs (i, ℓt(Xt, i)) for all i ∈ SIt,t, disclose feedback graph Gt

5: Extra observation oracle: observe X̃t ∼ D and pairs (i, ℓ̃t(X̃t, i)) for all

i ∈ SIt,t

6: For each i ∈ V , estimate the loss vector θi,t as

θ̂i,t =
I{i ∈ SIt,t}
qt(i
∣∣Xt) + βt

Σ−1X̃tℓ̃t(X̃t, i), (5.8)

where qt(i
∣∣Xt) = πa

t (i|Xt) +
∑

j:j
t−→i

πa
t (j
∣∣Xt)

7: end for

Algorithm 5.2 shows the detailed steps of EXP3-LGC-IX, which follows the

method of classical EXP3 and is similar to EXP3-LGC-U. The main differences

between EXP3-LGC-IX and EXP3-LGC-U are as follows. First, no explicit

uniform exploration mixes with the probability distribution of drawing action

(see (5.7)). In this case, for EXP3-LGC-U without uniform exploration, only
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a worse regret upper bound that contains mas(G) rather than α(G) can be

proven in the directed graph setting, where mas(G) is the average maximum

acyclic subgraphs number andmas(G) ≥ α(G). This result could be obtained

by simply removing the uniform exploration part in the proof of EXP3-LGC-U

and substituting Lemma 5.3 with [74, Lemma 10]. Second, biased loss vector

estimator is adopted (see (5.8)). Similar to EXP3-IX, this biased estimator

ensures that the loss estimator satisfies the following claim which turns out

to be essential for our analysis.

Claim 5.3. The estimator θ̂i,t of the loss vector θi,t for each i ∈ V and t

satisfies

Et

[∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉∣∣∣∣∣Xt

]

=
∑
i∈V

πa
t (i|Xt) ⟨Xt, θi,t⟩ − βt

∑
i∈V

πa
t (i|Xt)

qt(i|Xt) + βt

⟨Xt, θi,t⟩ . (5.9)

Remark 5.6. Claim 5.3 indicates the loss estimators in EXP3-LGC-IX are

optimistic. The bias incurred by EXP3-LGC-IX can be directly controlled

by the implicit exploration rate βt. This kind of implicit exploration actu-

ally has similar effect in controlling the variance of the loss estimators as

explicit exploration (e.g., uniform exploration), though the approach is dif-

ferent. Notice that Claim 5.3 does not hold if there is no extra observation

oracle (see the proof in Section 5.5.1 for details), which further demonstrates

the necessity of the oracle.

5.3.1 Regret analysis for EXP3-LGC-IX

The upper bound on the regret of EXP3-LGC-IX follows Theorem 5.2, where

the proof of Theorem 5.2 is deferred to Section 5.5.2. Notice that a similar

higher-order term as that in Remark 5.5 appear in the proof of Theorem 5.2,

if the extra observation oracle is not adopted.

Theorem 5.2. Setting βt =
√

logL/(L+
∑t−1

s=1 Qs) and
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ηt =
√

logL/(dL+ d
∑t−1

s=1Qs), the expected regret of EXP3-LGC-IX satisfies:

RT ≤ 2(1 +
√
d)E


√√√√(L+

T∑
t=1

Qt

)
logL

 , (5.10)

for both directed and undirected graph settings, where Qt =

2α(Gt) log
(
1 + ⌈L2/βt⌉+L

α(Gt)

)
+ 2.

Based on Theorem 5.2, we have the following corollary.

Corollary 5.3. Suppose α(Gt) ≤ αt for t = 1, . . . T , the regret of EXP3-LGC-

IX satisfies

RT = O


√√√√ T∑

t=1

αtd logL log (LT )

 ,

for both directed and undirected graph settings.

Corollary 5.3 reveals that by adopting the learning rate ηt and the im-

plicit exploration rate βt adaptively, the regret of EXP3-LGC-IX can be upper

bounded by O(
√

α(G)dT logL log(LT )) for both directed and undirected

graph settings. This result indicates that EXP3-LGC-IX captures the benefits

of both contexts and side observations, as discussed in Section 5.2.2. The

EXP3-LGC-IX algorithm cannot handle negative losses due to the following

two reasons. First, if the losses are negative, Claim 5.3 does not hold. Sec-

ond, although we can flip the sign of βt according to the sign of the loss vector

to guarantee the optimism of the loss estimator, the graph-theoretic result

(e.g., [82, Lemma 2]) cannot be applied as βt is required to be positive.
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5.4 Proofs in Section 5.2

5.4.1 Proof of Claim 5.1

Proof. By plugging (5.4) into Et

[
θ̂i,t

∣∣∣Xt

]
, we have that

Et

[
θ̂i,t

∣∣∣Xt

]
= Et

[
I{i ∈ SIt}
qt(i
∣∣Xt)

Σ−1X̃tℓ̃t(X̃t, i)

∣∣∣∣∣Xt

]

= Et

[
I{i ∈ SIt}
qt(i
∣∣Xt)

Σ−1X̃tX̃
⊤
t θi,t

∣∣∣∣∣Xt

]
(a)
= Et

[
I{i ∈ SIt}
qt(i
∣∣Xt)

∣∣∣∣∣Xt

]
Σ−1E

[
X̃tX̃

⊤
t

]
θi,t,

where step (a) uses the fact that Et [θi,t|Xt] = Et [θi,t] = θi,t, and X̃t is

independent of Ft−1, Xt, and θi,t. Notice the following facts,

Et

[
I{i ∈ SIt}
qt(i
∣∣Xt)

∣∣∣∣∣Xt

]
=
∑

j:i∈Sj,t

πa
t (j|Xt)

qt(i
∣∣Xt)

= 1, and E
[
X̃tX̃

⊤
t

]
= Σ.

We conclude that Et

[
θ̂i,t

∣∣∣Xt

]
= θi,t.

5.4.2 Proof of Claim 5.2

Proof.

E

[∑
i∈V

(πa
t (i|Xt)− πT (i|Xt))

〈
Xt, θ̂i,t

〉]
(a)
= E

[
Et

[∑
i∈V

(πa
t (i|Xt)− πT (i|Xt))

〈
Xt, θ̂i,t

〉∣∣∣∣∣Xt

]]

= E

[∑
i∈V

(πa
t (i|Xt)− πT (i|Xt))

〈
Xt,Et

[
θ̂i,t

∣∣∣Xt

]〉]
(b)
= E

[∑
i∈V

(πa
t (i|Xt)− πT (i|Xt)) ⟨Xt, θi,t⟩

]
,

where step (a) uses the law of total expectation and step (b) uses Claim 5.1.

80



5.4.3 Proof of Lemma 5.1

Proof. As mentioned before, Claim 5.2 enables us to adopt the techniques

similar to the ones used to originally analyze EXP3 in [217]. We introduce

Wt(x) =
∑

i∈V wt(x, i) for convenience, where wt(x, i) is defined in (5.2).

With the assumption that |η⟨Xt, θ̂i,t⟩| ≤ 1, the following result holds for each

t = 1, . . . , T ,

log
Wt+1(Xt)

Wt(Xt)

= log

(∑
i∈V

wt+1(Xt, i)

Wt(Xt)

)

= log

(∑
i∈V

wt(Xt, i)

Wt(Xt)
· e−η⟨Xt,θ̂i,t⟩

)
(a)
= log

(∑
i∈V

πa
t (i|Xt)− γ/L

1− γ
· e−η⟨Xt,θ̂i,t,⟩

)
(b)

≤ log

(∑
i∈V

πa
t (i|Xt)− γ/L

1− γ

(
1− η

〈
Xt, θ̂i,t

〉
+ η2

〈
Xt, θ̂i,t

〉2))

= log

(
1 +

∑
i∈V

πa
t (i|Xt)− γ/L

1− γ

(
−η
〈
Xt, θ̂i,t

〉
+ η2

〈
Xt, θ̂i,t

〉2))
(c)

≤
∑
i∈V

πa
t (i|Xt)

1− γ

(
−η
〈
Xt, θ̂i,t

〉
+ η2

〈
Xt, θ̂i,t

〉2)
+

ηγ

L(1− γ)

∑
i∈V

〈
Xt, θ̂i,t

〉
, (5.11)

where equality (a) uses the definition of πa
t (i|Xt) in (5.3), in step (a) the

inequality e−z ≤ 1− z+ z2 that holds for z ≥ −1 is used, and in step (b) the

inequality log(1 + z) ≤ z that holds for z > −1 is used.

The key to this proof is in the following. By drawing X from the dis-

tribution D that is independent of the entire interaction history FT , and

substituting Xt with X, we have that

E
[
log

Wt+1(Xt)

Wt(Xt)

]
= E

[
log

Wt+1(X)

Wt(X)

]
.
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This is because Xt and X are i.i.d., and for each term log(Wt+1(Xt)/Wt(Xt)),

only Xt is substituted with X while X1, . . . , Xt−1 remain unchanged. Re-

peatedly, we apply this step to E
[
log Wt+1(Xt)

Wt(Xt)

]
for each t, which leads to the

following lower bound,

E

[
T∑
t=1

log
Wt+1(Xt)

Wt(Xt)

]
= E

[
T∑
t=1

log
Wt+1(X)

Wt(X)

]

= E
[
log

WT+1(X)

W1(X)

]
(a)

≥ E
[
log

wT+1(X, πT (X))

W1(X)

]
(b)
= E

[
−η

T∑
t=1

〈
X, θ̂πT (X),t

〉
− logL

]
(c)
= E

[
−η

T∑
t=1

〈
Xt, θ̂πT (Xt),t

〉
− logL

]

= E

[
−η

T∑
t=1

∑
i∈V

πT (i|Xt)
〈
Xt, θ̂i,t

〉
− logL

]
, (5.12)

where inequality (a) is due to the fact that WT+1(X) ≥ wT+1(X, πT (X)),

step (b) is derived from the definition of wT+1(X, πT (X)) and the fact that

log(W1(X)) = L, and step (c) is realized by substituting X with Xt in each

of
〈
X, θ̂πT (X),t

〉
as Xt and X are i.i.d. Combining the upper bound in (5.11)

and the lower bound in (5.12) gives

E

[
−η

T∑
t=1

∑
i∈V

πT (i|Xt)
〈
Xt, θ̂i,t

〉
− logL

]

≤ E

[
T∑
t=1

∑
i∈V

πa
t (i|Xt)

1− γ

(
−η
〈
Xt, θ̂i,t

〉
+ η2

〈
Xt, θ̂i,t

〉2)

+
ηγ

L(1− γ)

∑
i∈V

〈
Xt, θ̂i,t

〉]
.

Reordering and multiplying both sides by 1−γ
η

gives

E

[
T∑
t=1

∑
i∈V

(πa
t (i|Xt)− πT (i|Xt))

〈
Xt, θ̂i,t

〉]
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≤ (1− γ) logL

η
+ ηE

[
T∑
t=1

∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉2]

+ γE

[
T∑
t=1

∑
i∈V

(
1

L
− πT (i|Xt)

)〈
Xt, θ̂i,t

〉]
.

Furthermore, combining Claim 5.2 with the fact that

E

[
T∑
t=1

∑
i∈V

(
1

L
− πT (i|Xt)

)〈
Xt, θ̂i,t

〉]

= E

[
T∑
t=1

∑
i∈V

(
1

L
− πT (i|Xt)

)
⟨Xt, θi,t⟩

]
≤ 2T,

and (1− γ) ≤ 1, we conclude with

E

[
T∑
t=1

∑
i∈V

(πa
t (i|Xt)− πT (i|Xt))

〈
Xt, θ̂i,t

〉]

≤ logL

η
+ 2γT + ηE

[
T∑
t=1

∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉2]
.

Since the above steps hold for any πT ∈ Π, we have that

RT ≤
logL

η
+ 2γT + ηE

[
T∑
t=1

∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉2]
.

5.4.4 Proof of Theorem 5.1

Before presenting the proof of Theorem 5.1, we restate the following two

graph-theoretic results from [71, 74] for convenience.

Lemma 5.2 (Lemma 10 in [74]). Let Gt be an undirected graph. For any

distribution π over V ,

∑
i∈V

π(i)

π(i) +
∑

j:j
t−→i

π(j)
≤ α(Gt).
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Lemma 5.3 (Lemma 5 in [73]). Let Gt be a directed graph and π be any

probability distribution over V . Assume that π(i) ≥ ϵ for all i ∈ V for some

constant 0 < ϵ < 1
2
. Then,

∑
i∈V

π(i)

π(i) +
∑

j:j
t−→i

π(j)
≤ 4α(Gt) log

4L

α(Gt)ϵ
.

Proof of Theorem 5.1. Using Lemma 5.1, we are left to upper bound the

term E
[∑T

t=1

∑
i∈V πa

t (i|Xt)
〈
Xt, θ̂i,t

〉2]
. Substituting (5.4) into this term

yields,

E

[∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉2]

= E

[∑
i∈V

πa
t (i|Xt)

I{i ∈ SIt,t}l̃2t (X̃t, i)

q2t (i|Xt)
X⊤

t Σ
−1X̃tX̃

⊤
t Σ

−1Xt

]
(a)

≤ E

[∑
i∈V

πa
t (i|Xt)

I{i ∈ SIt,t}
q2t (i|Xt)

X⊤
t Σ

−1X̃tX̃
⊤
t Σ

−1Xt

]
(5.13)

(b)
= E

∑
i∈V

Et

[
I{i ∈ SIt,t}
q2t (i|Xt)

∣∣∣∣Xt

]
︸ ︷︷ ︸

A

πa
t (i|Xt)X

⊤
t Σ

−1X̃tX̃
⊤
t Σ

−1Xt

 ,

where the step (a) is due to the fact that l̃2t (X̃t, i) ≤ 1, and step (b) uses the

law of total expectation. We have the following result for term A:

A =
∑

j:i∈Sj,t

π(j|Xt)

q2t (i|Xt)
=

qt(i|Xt)

q2t (i|Xt)
=

1

qt(i|Xt)
.

According to Lemmas 5.2 and 5.3, we know that

∑
i∈V

πa
t (i|Xt)

qt(i|Xt)
≤ Qt,

where Qt is α(Gt) for undirected graph setting and 4α(Gt) log(4L
2/(α(Gt)γ))
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for directed graph setting. Also, Qt is independent of Xt and X̃t. Thus,

E

[∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉2]
≤ E [Qt]E

[
X⊤

t Σ
−1X̃tX̃

⊤
t Σ

−1Xt

]
= E [Qt]E

[
tr(Σ−1X̃tX̃

⊤
t Σ

−1XtX
⊤
t )
]

= dE [Qt] .

In addition, we must ensure that η
∣∣∣〈Xt, θ̂i,t

〉∣∣∣ ≤ 1 for all t = 1, . . . , T :

∣∣∣〈Xt, θ̂i,t

〉∣∣∣ = I{i ∈ Si,t}
qt(i|Xt)

∣∣∣X⊤
t Σ

−1X̃tl̃t(X̃t, i)
∣∣∣ ≤ Lσ2

λminγ
,

where we use the fact that qt(i|Xt) ≥ πa
t (i|Xt) ≥ γ

L
, |l̃t(X̃t, i)| ≤ 1, and∣∣∣X⊤

t Σ
−1X̃t

∣∣∣ ≤ σ2

λmin
. Choosing γ = ηLσ2

λmin
guarantees η

∣∣∣〈Xt, θ̂i,t

〉∣∣∣ ≤ 1, which

concludes the proof.

5.4.5 Proofs of Corollaries 5.1 and 5.2

Proof of Corollary 5.1. Given the fact Qt = α(Gt) in Theorem 5.1, and as-

suming α(Gt) ≤ αt for t = 1, . . . , T , we conclude that

RT = O


√√√√(2Lσ2T/λmin + d

T∑
t=1

αt

)
logL

 ,

by setting η =
√

logL

2Lσ2T/λmin+d
∑T

t=1 αt
.

Proof of Corollary 5.2. Define f(z) = 4z log(4L2/(zγ)) for z ≤ L, and we

have that

f ′(z) = 4 log
4L2

γ
− 4 log z − 4.

Notice that 4 log(4L2) > 4 log z, and so f(z) is an increasing function as long

as log(1/γ) ≥ 1. If α(Gt) ≤ αt for t = 1, . . . , T , the following result holds if

log(1/γ) ≥ 1,

E
[
4α(Gt) log

4L2

α(Gt)γ

]
≤ 4αt log

4L2

αtγ
.

By choosing η =
√

1/(Lσ2T/λmin + 4d
∑T

t=1 αt) and γ = ηLσ2

λmin
, we conclude
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that

RT = O


√√√√(Lσ2

λmin

T + 4d
T∑
t=1

αt

)
log(LdT )

 .

5.5 Proofs for Section 5.3

5.5.1 Proof of Claim 5.3

Proof.

Et

[∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉∣∣∣∣∣Xt

]

=
∑
i∈V

πa
t (i|Xt)

1

qt(i|Xt) + βt

XT
t Σ

−1Et

[
I{i ∈ SIt,t}X̃tX̃

⊤
t

∣∣∣Xt

]
θi,t

(a)
=
∑
i∈V

πa
t (i|Xt)

qt(i|Xt)

qt(i|Xt) + βt

⟨Xt, θi,t⟩

=
∑
i∈V

πa
t (i|Xt) ⟨Xt, θi,t⟩ − βt

∑
i∈V

πa
t (i|Xt)

qt(i|Xt) + βt

⟨Xt, θi,t⟩ ,

where the equality (a) holds because I{i ∈ SIt,t} and X̃t are independent.

5.5.2 Proof of Theorem 5.2

To prove Theorem 5.2, we need the graph-theoretic result from [82, Kocak

et al., 2014] which is restated here.

Lemma 5.4 (Lemma 2 in [82]). Let Gt be a directed or undirected graph with

vertex set V := {1, . . . , L}. Let α(Gt) be the independence number of Gt and

π be a distribution over V . Then,

∑
i∈V

π(i)

c+ π(i) +
∑

j:j
t−→i

π(j)
≤ 2α(Gt) log

(
1 +
⌈L2/c⌉+ L

α(Gt)

)
+ 2,

where c is a positive constant.
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Proof of Theorem 5.2. We start by recalling the notation wt(x, i) =

exp(−ηt
∑t−1

s=1

〈
x, θ̂i,s

〉
)/L in (5.8), and introducing Wt(x) =

∑
i∈V wt(x, i)

and W ′
t(x) =

∑
i∈V exp

(
−ηt−1

∑t−1
s=1

〈
x, θ̂i,s

〉)
/L. The proof follows [82]

with some additional techniques.

1

ηt
log

W ′
t+1(Xt)

Wt(Xt)

=
1

ηt
log

(∑
i∈V

wt(Xt, i)

Wt(Xt)
e−ηt⟨Xt,θ̂i,t⟩

)

=
1

ηt
log

(∑
i∈V

πa
t (i|Xt)e

−ηt⟨Xt,θ̂i,t⟩
)

(a)

≤ 1

ηt
log

(∑
i∈V

πa
t (i|Xt)

(
1− ηt

〈
Xt, θ̂i,t

〉
+

1

2
η2t

〈
Xt, θ̂i,t

〉2))

=
1

ηt
log

(
1 +

∑
i∈V

πa
t (i|Xt)

(
−ηt

〈
Xt, θ̂i,t

〉
+

1

2
η2t

〈
Xt, θ̂i,t

〉2))
(b)

≤ 1

ηt

∑
i∈V

πa
t (i|Xt)

(
−ηt

〈
Xt, θ̂i,t

〉
+

1

2
η2t

〈
Xt, θ̂i,t

〉2)
, (5.14)

where step (a) uses the inequality exp(−z) ≤ 1−z+z2/2 that holds for z ≥ 0

and step (b) uses the inequality log(1 + z) ≤ z that holds for all z > −1.
Notice that

Wt+1(Xt) =
∑
i∈V

1

L
e−ηt+1

∑t
s=1⟨Xt,θ̂i,t⟩

=
∑
i∈V

1

L

(
e−ηt

∑t
s=1⟨Xt,θ̂i,t⟩

) ηt+1
ηt

(a)

≤

(
1

L

∑
i∈V

e−ηt
∑t

s=1⟨Xt,θ̂i,t⟩
) ηt+1

ηt

= (W ′
t+1(Xt))

ηt+1
ηt , (5.15)

where step (a) uses Jensen’s inequality for the concave function z
ηt+1
ηt for all

z ∈ R as ηt is a decreasing sequence. Taking the log(·) on both side of (5.15),

we have that

1

ηt
log

W ′
t+1(Xt)

Wt(Xt)
≥ logWt+1(Xt)

ηt+1

− logWt(Xt)

ηt
.
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The following fact that can be easily interpreted using the same techniques

as Lemma 5.1:

E

[
T∑
t=1

(
logWt+1(Xt)

ηt+1

− logWt(Xt)

ηt

)]

= E
[
logWT+1(X)

ηT+1

− logW1(X)

η1

]
≥ E

[
logwT+1(X, πT (X))

ηT+1

− logW1(X)

η1

]
= −E

[
logL

ηT+1

]
− E

[
T∑
t=1

〈
X, θ̂πT (X),t

〉]

= −E
[
logL

ηT+1

]
− E

[
T∑
t=1

〈
Xt, θ̂πT (Xt),t

〉]
, (5.16)

where X ∼ D is independent from the whole interaction history Ft. Wrap-

ping up above steps in (5.14) and (5.16) and applying the Claim 5.3, the θi,t

is an optimistic estimator that E
[∑T

t=1

〈
Xt, θ̂πT (Xt),t

〉]
≤

E
[∑T

t=1

〈
Xt, θπT (Xt),t

〉]
, we have that

− E
[
logL

ηT+1

]
− E

[
T∑
t=1

〈
Xt, θπT (Xt),t

〉]

≤ E

[
T∑
i=1

∑
i∈V

πa
t (i|Xt)

(
−
〈
Xt, θ̂i,t

〉
+

1

2
ηt

〈
Xt, θ̂i,t

〉2)]
. (5.17)

Notice that

E

[∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉]

= E

[
Et

[∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉∣∣∣∣∣Xt

]]
(a)
= E

[∑
i∈V

πa
t (i|Xt) ⟨Xt, θi,t⟩ − βt

∑
i∈V

πa
t (i|Xt)

qt(i|Xt) + βt

⟨Xt, θi,t⟩

]
(b)

≥ E

[∑
i∈V

πa
t (i|Xt) ⟨Xt, θi,t⟩ − βtQt

]
, (5.18)

where step (a) is due to Claim 5.3, and step (b) uses Lemma 5.4 and

88



⟨Xt, θi,t⟩ ∈ [0, 1]. Also,

E

[
ηt
∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉2]
= E

[
Et

[
ηt
∑
i∈V

πa
t (i|Xt)

〈
Xt, θ̂i,t

〉2∣∣∣∣∣Xt

]]

≤ E

[
E [ηt]

∑
i∈V

πa
t (i|Xt)

(qt(i|Xt) + βt)2
X⊤

t Σ
−1Et

[
I{i ∈ SIt,t}X̃tX̃

⊤
t

∣∣∣Xt

]
Σ−1Xt

]

= E

[
E [ηt]

∑
i∈V

πa
t (i|Xt)qt(i|Xt)

(qt(i|Xt) + βt)2
X⊤

t Σ
−1Xt

]

= E

[
ηt
∑
i∈V

πa
t (i|Xt)qt(i|Xt)

(qt(i|Xt) + βt)qt(i|Xt)
X⊤

t Σ
−1Xt

]
(a)

≤ E
[
ηtQttr(Σ

−1XtX
⊤
t )
]
≤ E [ηtQt] d, (5.19)

where step (a) uses Lemma 5.4. By reordering the results in Eqs. (5.17), (5.18),

and (5.19), we have that

E

[
T∑
t=1

(πa
t (i|Xt)− πT (i|Xt)) ⟨Xt, θt⟩

]

≤ E
[
logL

ηt+1

]
+

T∑
t=1

E [βtQt] +
d

2

T∑
i=1

E [ηtQt] .

(5.20)

Plugging in ηt and βt and using Lemma 3.5 in [224], the result in (5.20)

becomes

RT ≤ 2(1 +
√
d)E


√√√√(L+

T∑
t=1

Qt

)
logL

 ,

which holds for all πT ∈ Π.

5.5.3 Proof of Corollary 5.3

Proof. Notice that x log(1 + a/x) is an increasing function of x ∈ (0,∞] for

any a > 0, and thus

Qt ≤ 2αt log

(
1 +
⌈L2/βt⌉+ L

αt

)
+ 2,
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if α(Gt) ≤ αt for t = 1, . . . T . Using the fact

log

(
1 +
⌈L2/βt⌉+ L

αt

)
≤ log

(
1 +
⌈L2
√

tL/ logL⌉+ L

αt

)
= O(log(LT )),

we conclude that

RT = O


√√√√ T∑

t=1

αtd logL logLT

 ,

for both directed and undirected graph settings.
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Part II

Joint Community Detection

and Phase Synchronization
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CHAPTER 6

MULTI-FREQUENCY JOINT
COMMUNITY DETECTION AND PHASE

SYNCHRONIZATION

6.1 Preliminaries

6.1.1 Notations

Throughout Chapter 6, we use [n] to denote the set {1, 2, . . . , n}, and I{·}
to denote the indicator function. The uppercase and lowercase letters in

boldface are used to represent matrices and vectors, while normal letters

are reserved for scalars. ∥X∥F and Tr(X) denote the Frobenius norm and

the trace of matrix X, and ∥v∥2 denotes the ℓ2 norm of the vector v. The

transpose and conjugate transpose of a matrix X (resp. a vector x) are

denoted by X⊤ and XH (resp. x⊤ and xH), respectively. An m× n matrix

of all zeros is denoted by 0m×n (or 0, for brevity). An identity matrix of size

n × n is defined as In. The complex conjugate of x is denoted by x. The

inner product ⟨·, ·⟩ between two scalars, vectors, and matrices are ⟨x, y⟩ = xy,

⟨x,y⟩ = xHy, and ⟨X,Y ⟩ = Tr(XHY ), respectively. In terms of indexing,

(i, j)th entry of X is denoted by Xij, and ith entry of x is denoted by xi.

Xi,· (resp. X·,j) is used to denote ith row (resp. jth column) of X. We use

Xi,j: (resp. Xi:,j) to denote the segment of the ith row (resp. jth column)

from the jth entry (resp. ith entry) to the end, and xi: to denote the segment

from ith entry to the end. In addition, the sub-matrix of X from the ith

row and jth column to the end is denoted by Xi:,j:. Lastly, we use O and

Θ to denote the usual Big-O and Big-Theta notations. The notations are

summarized in Table 6.1.
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Table 6.1: Notation table.

[n] Set of first n positive integers: 1, . . . , n.
I{·} Indicator function.

X, x, x Matrix, vector, scalar.
X⊤, XH Transpose, conjugate transpose.

x Complex conjugate.
⟨·, ·⟩ Inner product.
∥ · ∥F Frobenius norm of a matrix.
∥ · ∥2 ℓ2 norm of a vector.

0m×n (or 0) All zero matrix of size m× n.
In Identity matrix of size n× n.
Xij the (i, j)th entry of X.
xi the ith entry of x.

Xi,· (X·,j) the ith row (the jth column) of X.

Xi,j: (Xi:,j)
Segment of the ith row (the jth column) from the jth

entry (the ith entry) to the end of the row (the column).
xi: Segment of the vector x from the ith entry to the end.

Xi:,j:
Sub-matrix of X from the ith row
and the jth column to the end.

O Big-O notation.
Θ Big-Theta notation.

6.1.2 Definitions

Definition 6.1 (QR factorization). Given X ∈ Cm×n, a QR factorization

of X satisfies

X = QR,

where Q ∈ Cm×m is a unitary matrix, and R ∈ Cm×n is an upper triangular

matrix.

Such factorization always exists for any X. The most common methods

for computing the QR factorization are Gram-Schmidt process [225] and

Householder transformation [226].

Definition 6.2 (Column-pivoted QR factorization). Let X ∈ Cm×n with

m ≤ n has rank m. The column-pivoted QR factorization of X is the fac-

torization

XΠn = Q [R1, R2] ,

as computed via the Golub-Businger algorithm [227] where Πn ∈ {0, 1}n×n

is a permutation matrix, Q is a unitary matrix, R1 is an upper triangular

matrix, and R2 ∈ Cm×(n−m).

The ordinary QR factorization is proceeded on X from the first column

93



to the last column in order, whereas the order of the CPQR factorization is

indicated by Πn. We refer to [227] for more details on the CPQR factoriza-

tion.

Definition 6.3 (Projection onto H in (1.1)). For an arbitrary matrix X ∈
Rm×n, we define

PH(X) := argmin
H∈H

∥H −X∥F = argmax
H∈H

⟨H ,X⟩

as the projection of X onto H.

The projection aims to find the cluster structure that has the largest

overall score given by X. It is shown in [228] that projection onto H is

equivalent to a minimum-cost assignment problem (MCAP) and can be effi-

ciently solved by the “incremental algorithm” for MCAP [229, Section 3] with

O(n2m logm) computational complexity. The uniqueness condition of the

projection PH(X) can be found in the proof of [229, Theorem 2.1] and [230,

Theorem 2]. If the solution is not unique, the “incremental algorithm” for

MCAP [229, Section 3] will generates a feasible projection randomly.

6.2 Problem Formulation

In this section, we formally define the probabilistic model, SBM-Ph, stud-

ied in this chapter. We first consider discrete phase angles and formulate

the corresponding MLE problem which exhibits a multi-frequency structure.

Then, we extend the problem to continuous phase angles and formulate a

truncated MLE problem.

6.2.1 Stochastic Block Model with Discrete Relative Phase
Angles

SBM-Ph is considered in a network with N nodes and M ≥ 2 underlying

clusters of equal size s = N/M. We assume each node i ∈ [N ] falls into one of

M underlying clusters with the assignment M∗(i) ∈ [M ] and is associated

with an unknown phase angle θ∗i ∈ Ω, where Ω := {0, . . . , (2Kmax + 1)∆} is

94



a discretization of [0, 2π) with ∆ = 2π/(2Kmax + 1). We use S∗
m to denote the

set of nodes belonging to the mth cluster for all m ∈ [M ].

SBM-Ph generates a random graph G = ([N ], E) with the node set [N ]

and the edge set E ⊆ [N ] × [N ]. Each pair of nodes (i, j) are connected

independently with probability p if i and j belong to the same cluster or

equivalently, M∗(i) = M∗(j). Otherwise, i and j are connected indepen-

dently with probability q if M∗(i) ̸= M∗(j). Meanwhile, a relative phase

angle θij ∈ Ω is observed on each edge (i, j) ∈ E . WhenM∗(i) =M∗(j), we

obtain θij := (θ∗i − θ∗j ) mod 2π. Otherwise, we observe θij := uij ∼ Unif(Ω),

which is drawn uniformly at random from Ω.

Our observation model can be represented by the observation matrix A ∈
CN×N , which is a Hermitian matrix whose (i, j)th entry for any i < j satisfies,

Aij =


eι(θ

∗
i −θ∗j ), with prob p ifM∗(i) =M∗(j),

eιuij , with prob q ifM∗(i) ̸=M∗(j),

0, o.w.,

(6.1)

where Aji = Aij. We also set the diagonal entry Aii = 0,∀i ∈ [N ]. Notice

that a realization generated by the above observation matrix (6.1) is a noisy

version of the clean observation matrix Aclean ∈ CN×N whose (i, j)th entry

satisfies,

Aclean
ij =

eι(θ
∗
i −θ∗j ), ifM∗(i) =M∗(j),

0, otherwise.
(6.2)

Specially, A is equal to Aclean when p = 1 and q = 0.

Remark 6.1. Unlike the observation matrix (or adjacency matrix) ASBM in

SBM [93, 92, 83, 103] with only {0, 1}-valued entries, A in (6.1) extends

to incorporating the relative phase angles θij into edges. On the other hand,

while entries of the observation matrix APh in the phase synchronization

problem [84, 121, 122] encode the the pairwise transformation information,

they do not have the underlying M-cluster structure.
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6.2.2 MLE with Multi-Frequency Nature

Based on the observation matrix A, we detail the MLE formulation for re-

covering the cluster structure and phase angles in this section. Given pa-

rameters, phase angles associated with nodes {θi ∈ Ω}Ni=1 and the cluster

structure {Sm}Mm=1 of equal size s, the probability model of observing Aij

between node pair (i, j) is

P
(
Aij

∣∣{θi ∈ Ω}Ni=1, {Sm}Mm=1

)

=



p, if Aij = eι(θi−θj) andM(i) =M(j),

0, if Aij ̸= eι(θi−θj) andM(i) =M(j),

1− p, if Aij = 0 andM(i) =M(j),

q/K, if Aij = eιuij andM(i) ̸=M(j),

1− q, if Aij = 0 andM(i) ̸=M(j),

whereM(·) is the assignment function corresponding to the cluster structure

{Sm}Mm=1, and K = 2Kmax + 1. The likelihood function given observations

on the edge set E is

P
(
{Aij}(i,j)∈E

∣∣{θi ∈ Ω}Ni=1, {Sm}Mm=1

)
=

∏
M(i)=M(j)

(i,j)∈E

pI{Aij=eι(θi−θj)}
∏

M(i)=M(j)
(i,j)∈E

0I{Aij ̸=eι(θi−θj)}
∏

M(i)̸=M(j)
(i,j)∈E

q/K, (6.3)

due to the independence among edges within E . Notice that maximizing the

likelihood function (6.3) is equal to maximizing the following log-likelihood

function

logP
(
{Aij}(i,j)∈E

∣∣{θi ∈ Ω}Ni=1, {Sm}Mm=1

)
=∑

M(i)=M(j)
(i,j)∈E

I{Aij = eι(θi−θj)} log p+
∑

M(i)=M(j)
(i,j)∈E

I{Aij ̸= eι(θi−θj)} log 0

+
∑

M(i) ̸=M(j)
(i,j)∈E

log q/K.

(6.4)
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Given 0 < q/K < p, maximizing (6.4) is equivalent to

max
{θi∈Ω}Ni=1

{Sm}Mm=1

∑
M(i)=M(j)

(i,j)∈E

I{θij = [(θi − θj) mod 2π]}, (6.5)

by assuming 0 log 0 = 0 in (6.4). By taking the FFT w.r.t. the support Ω of

((θi − θj) mod 2π)s and inverse FFT (IFFT) back, (6.5) is equivalent to

max
{θi∈Ω}Ni=1

{Sm}Mm=1

Kmax∑
k=−Kmax

M∑
m=1

∑
i,j∈Sm

〈
A

(k)
ij , eιk(θi−θj)

〉
, (6.6)

where A(k) is the kth entry-wise power of A with A
(k)
ij = eιkθij .

As indicated by (6.6), the MLE exhibits a multi-frequency nature, where

the kth frequency component is
∑M

m=1

∑
i,j∈Sm

⟨A(1)
ij , e

ι(θi−θj)⟩ in (6.6). Al-

though the following program using the first frequency component

max
{θi∈Ω}Ni=1

{Sm}Mm=1

M∑
m=1

∑
i,j∈Sm

〈
A

(1)
ij , e

ι(θi−θj)
〉
, (6.7)

is a reasonable formulation for the joint estimation problem as suggested

by [123, 1, 2], it is indeed not a MLE formulation. One can show that (6.7)

is equivalent to

max
{θi∈Ω}Ni=1

{Sm}Mm=1

∑
M(i)=M(j)

(i,j)∈E

cos(θij − (θi − θj)),

which is not the MLE (6.5) of the joint estimation problem.

To proceed, we perform a change of optimization variables for (6.6). By

defining a unitary matrix V ∈ CN×M whose (i,m)th entry satisfies

Vim :=

 1√
s
eιθi , if i ∈ Sm(orM(i) = m),

0, otherwise,
(6.8)

the cluster structure {Sm}Mm=1 and the associated phase angles {θi ∈ Ω}Ni=1

are encoded into one simple unitary matrix V . Then, the optimization pro-

97



gram (6.6) can be reformulated as

max
V ∈CN×M

Kmax∑
k=−Kmax

〈
A(k),V (k)

(
V (k)

)H〉
s.t. V satisfies the form (6.8),

(6.9)

where each V (k) is generated by V through the entry-wise power that satisfies

V
(k)
im :=

 1√
s
eιkθi , if i ∈ Sm(orM(i) = m),

0, otherwise.
(6.10)

The optimization program (6.9) is non-convex and is thus computationally

intractable to be solved exactly. Although one can try SDP based approaches

similar to [123], it is not guaranteed to obtain exact solutions to the MLE,

let alone the high computational complexity when N and Kmax are large.

Therefore, we propose a spectral method based on the MF-CPQR factoriza-

tion and an iterative MF-GPM in Section 6.3 and Section 6.4, respectively.

6.2.3 Extension to Continuous Phase Angles: A Truncated
MLE

We consider the joint estimation problem on a discretization of [0, 2π) in

Section 6.2.1, and then derive the MLE formulation in Section 6.2.2. Now,

we turn to the joint estimation problem with continuous phase angles in

[0, 2π) (θi ∈ [0, 2π),∀i ∈ [N ]).

Following the similar steps as (6.3), (6.4), (6.5), the MLE formulation is

max
{θi∈[0,2π)}Ni=1

{Sm}Mm=1

∑
M(i)=M(j)

(i,j)∈E

I([(θi − θj) mod 2π] = θij). (6.11)

The MLE formulation (6.11) is essentially equal to counting the times that

δ([(θi − θj) mod 2π] = θij) =∞, where δ(·) is the Dirac delta function. We
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can express the Dirac delta function with its Fourier series expansion,

δ([(θi − θj) mod 2π] = θij) =
+∞∑

k=−∞

eιk(θi−θj)e−ιkθij

≈
Kmax∑

k=−Kmax

eιk(θi−θj)e−ιkθij .

(6.12)

The straightforward truncation in (6.12) corresponds to approximating the

Dirac delta with the Dirichlet kernel. By this truncation, the problem

in (6.11) is converted to

max
{θi∈[0,2π)}Ni=1

{Sm}Mm=1

Kmax∑
k=−Kmax

M∑
m=1

∑
i,j∈Sm

〈
A

(k)
ij , eιk(θi−θj)

〉
. (6.13)

The optimization program (6.13) is a truncated MLE of the joint estimation

problem with continuous phase angles of (6.11).

As one can observe from (6.6) and (6.13), the only difference is that θi ∈ Ω

is discrete in (6.6), and θi ∈ [0, 2π) is continuous in (6.13). Algorithms

in Section 6.3 and 6.4 can also be directly applied to the joint estimation

problem with continuous phase angles after simple modification. Due to the

similarity between the joint estimation problem and its continuous extension,

we will only focus on the joint estimation problem on Ω (despite numerical

experiments) in remaining parts of this chapter for brevity.

6.3 Spectral Method Based on the MF-CPQR

Factorization

In this section, we propose a spectral method based on the novel MF-CPQR

factorization for the joint estimation problem. We start with introducing

main steps and motivations of Algorithm 6.1 in Section 6.3.1. Section 6.3.2

states the novel algorithm, the MF-CPQR factorization, designed for our

spectral method, together with the difference between the MF-CPQR fac-

torization and the CPQR factorization. In Section 6.3.3, we discuss the

computational complexity of our proposed algorithm in detail.

Our spectral method based on the MF-CPQR factorization is inspired by
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Algorithm 6.1: The spectral method based on the MF-CPQR fac-
torization
Input: The observation matrix A, and the number of clusters M .

1 (Eigendecomposition) For k = −Kmax, . . . ,Kmax, compute the top M

eigenvectors Φ(k) ∈ CN×M of A(k) such that
(
Φ(k)

)H
Φ(k) = IM

2 (MF-CPQR factorization) Compute the multi-frequency column-pivoted QR

factorization (detailed in Algorithm 6.2) of
{(

Φ(k)
)⊤}Kmax

k=−Kmax

, which yields

(
Φ(k)

)⊤
ΠN = Q(k)R(k) ⇒

(
Φ(k)

)⊤
= Q(k)R(k)Π⊤

N (6.14)

Update R(k) ← R(k)Π⊤
N ,∀k = −Kmax, . . . ,Kmax

3 (Recovery of the cluster structure and the phase angles) For each node i ∈ [N ],
assign its cluster as

M̂(i)← argmax
m∈[M ]

{
max
θi∈Ω

Kmax∑
k=−Kmax

〈
eιkθi ,R

(k)
mi

〉}
(6.15)

Then estimate the phase angle given the recovered cluster assignment M̂(i)

θ̂i ← argmax
θi∈Ω

Kmax∑
k=−Kmax

〈
eιkθi ,R

(k)

M̂(i)i

〉
(6.16)

Output: Estimated cluster structure {M̂(i)}Ni=1 and estimated phase angles

{θ̂i}Ni=1

the CPQR-type algorithms [231, 1] together with the multi-frequency nature

of the MLE formulation (6.9). Similar to the CPQR-type algorithms, Algo-

rithm 6.1 is deterministic and free of any initialization. Meanwhile, in terms

of computational complexity, Algorithm 6.1 scales linearly w.r.t. the number

of edges |E| and near-linearly w.r.t. Kmax.

6.3.1 Motivations

Algorithm 6.1 consists of three steps: i) Eigendecomposition of A(k), ii) MF-

CPQR factorization, and iii) Recovery of the cluster structure and phase an-

gles. It first computes matrices {Φ(k)}Kmax
k=−Kmax

that contain the top M eigen-

vectors of eachA(k) via eigendecomposition. Secondly, matrices {R(k)}Kmax
k=−Kmax

are obtained through the MF-CPQR factorization which is detailed in Algo-

rithm 6.2. The last step is recovering the cluster structure and associated

phase angles based on {R(k)}Kmax
k=−Kmax

via (6.15) and (6.16).

In terms of motivations for Algorithm 6.1, we start from the MLE formu-
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lation (6.9). We first relax (6.9) by replacing the constraints in (6.8) with

V HV = IM ,

Φ =argmax
V ∈CN×M

Kmax∑
k=−Kmax

〈
A(k),V (k)

(
V (k)

)H〉
s.t. V HV = IM ,

(6.17)

by noticing that V in (6.8) forms an orthonormal basis. The optimization

problem in (6.17) is still non-convex, and there is no simple spectral method

that can directly solve the problem. One approach is to relax the dependency

of V (k) among different frequencies and split (6.17) into different frequencies,

and that is, for k = −Kmax, . . . , Kmax, we have

Φ(k) = argmax
V (k)∈CN×M

〈
A(k),V (k)

(
V (k)

)H〉
s.t.

(
V (k)

)H
V (k) = IM .

(6.18)

The optimizer of (6.18) is the matrix that contains the top M eigenvectors of

A(k) denoted byΦ(k) ∈ CN×M . This accounts for step 1 (eigendecomposition)

in Algorithm 6.1.

In fact, one can infer the cluster structure from {Φ(k)}Kmax
k=−Kmax

. To see

this, for k = −Kmax, . . . , Kmax, we split A(k) into deterministic and random

parts:

A(k) = E[A(k)] + (A(k) − E[A(k)]) = E[A(k)] +∆(k), (6.19)

where E[A(k)] = pA
(k)
clean with A

(k)
clean being the entry-wise kth power of

Aclean (6.2), and the residual∆(k) is a random perturbation with E[∆(k)] = 0.

Obviously, each E[A(k)] is a low rank matrix that satisfies the following eigen-

decomposition:

E[A(k)] = ps

M∑
m=1

Ψ(k)
·,m
(
Ψ(k)

·,m
)H

,

with Ψ
(k)
im :=

 1√
s
eιkθ

∗
i , if i ∈ S∗

m,

0, otherwise,

where Ψ(k) ∈ CN×M is a matrix defined in a similar manner as V (k) in (6.10),

and satisfies
(
Ψ(k)

)H
Ψ(k) = IM . Then, for k = −Kmax, . . . , Kmax (except for
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k = 0), the non-zero entry in each row ofΨ(k) indicates the underlying cluster

assignmentM∗(i) and the exact phase angle θ∗i of node i.

Therefore, to recover the cluster structure and associated phase angles,

it suffices to extract {Ψ(k)}Kmax
k=−Kmax

from {Φ(k)}Kmax
k=−Kmax

. For the ease of

illustration, we first consider the case when p = 1 and q = 0. This indicates,

for k = −Kmax, . . . , Kmax, A
(k) = A

(k)
clean, ∆

(k) = 0, and Φ(k) = Ψ(k)O(k),

where O(k) ∈ CM×M is some unitary matrix. However, {O(k)}Kmax
k=−Kmax

are

unknown and even not synchronized among all frequencies. To address this

issue, the MF-CPQR factorization is introduced. Here, we assume that the

first s nodes are from the cluster S∗
1 , the following s nodes are from S∗

2 , and

so on. Applying the MF-CPQR factorization (step 2) in Algorithm 6.1 yields

(assume ΠN = IN)

(
Φ(k)

)⊤
=
(
O(k)

)⊤ (
Ψ(k)

)⊤
=

1√
s

(
O(k)

)⊤×
eιkθ

∗
1 · · · eιkθ

∗
s · · · 0 · · · 0

...
...

...
. . .

...
...

...

0 · · · 0 · · · eιkθ
∗
N−s+1 · · · eιkθ

∗
N



=
(
O(k)

)⊤

eιkθ

∗
1 · · · 0

...
. . .

...

0 · · · eιkθ
∗
N−s+1


︸ ︷︷ ︸

=:Q(k)

×


1 · · · eιk(θ

∗
s−θ∗1) · · · 0 · · · 0

...
...

...
. . .

...
...

...

0 · · · 0 · · · 1 · · · eιk(θ
∗
N−θ∗N−s+1)


︸ ︷︷ ︸

=:R(k)

= Q(k)R(k),

(6.20)

for k = −Kmax, . . . , Kmax. Therefore, each Q(k) ∈ CM×M is a unitary matrix

that includes the unknown unitary matrix O(k), and each R(k) ∈ CM×N is

a matrix that excludes O(k). More significantly, {R(k)}Kmax
k=−Kmax

contains all

the information needed to recover the cluster structure and associated phase

angles.

To recover the cluster structure, the CPQR-type algorithm [1] only uses

R(1). By noticing that for each node i, the ith column of R(1) (e.g., R
(1)
·,i )
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is sparse (its mth entry R
(1)
mi is nonzero if and only if m =M∗(i)), one can

determine the cluster assignment of node i by the position of the nonzero

entry. Meanwhile, the associated phase angle can also be determined by

obtaining the phase angle from the nonzero entry (up to some global phase

transition in the same cluster). When the observation A is noisy, the CPQR-

type algorithm recovers the cluster structure and associated phase angle of

node i by the position of the entry with the largest amplitude. The following

Theorem 6.1 proves as long as the perturbation to E[A(k)] is less than a

certain threshold, Φ(k) is still close to Ψ(k)O(k), for k = −Kmax, . . . , Kmax

(except for k = 0).

Theorem 6.1 (Row-wise error bound, adapted from [1]). Given a network

with N nodes and M = 2 underlying clusters, for a sufficiently large N , we

suppose

η :=

√
(p(1− p) + q) logN

p
√
N

≤ c0

for some small constant c0. Consequently, with probability at least 1 −
O(N−1),

max
i∈[N ]

∥∥∥Φ(k)
i,· −Ψ

(k)
i,· O

(k)
∥∥∥
2
≲

η√
N
,

where O(k) = P((Ψ(k))HΦ(k)).

Theorem 6.1 guarantees that i) amplitudes of other entries are less than

the entry indicating the true cluster structure with high probability, ii) the

phase angle information is preserved with high fidelity. Theorem 6.1 can

be proven by following the same routines as [1] by replacing the orthogonal

group element Oi with the U(1) group element (e.g., eιθi). The reason why

Theorem 6.1 holds for k = −Kmax, . . . , Kmax (despite k = 0) is due to statis-

tics of random perturbations {∆(k)}k in (6.19) do not change among different

frequencies. This is because the noise models of A(k) and A are the same.

More specifically, the noisy entry eιuij : uij ∼ Unif(Ω) in (6.1) has the same

statistics as eιkuij in A(k) due to the fact that kuij still yields the distribution

Unif(Ω).

Note that the CPQR-type algorithm in [1] is not developed from the MLE

formulation (6.9) of the joint estimation problem and thus does not capture

the multi-frequency nature. In this chapter, we leverage {R(k)}Kmax
k=−Kmax

that

contain information about the cluster structure and associated phase angles
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… …

𝑘𝑘

𝑅𝑅(𝑘𝑘)𝑅𝑅(−𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚) 𝑅𝑅(𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚)

i
m

…

𝑅𝑅𝑖𝑖1
−𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ⋯ 𝑅𝑅𝑖𝑖1

(𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚)

⋮ ⋱ ⋮
𝑅𝑅𝑖𝑖𝑀𝑀

−𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ⋯ 𝑅𝑅𝑖𝑖𝑀𝑀
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

Figure 6.1: Illustration of step 3 in Algorithm 6.1. For each i ∈ [N ], all the

ith columns in
{
R(k)

}Kmax

k=−Kmax
are extracted to estimate the cluster

assignment and phase angle following (6.15) and (6.16).

across multiple frequencies (step 3). Specifically, we first consider the same

case as that in (6.20) for intuition. As illustrated in Figure 6.1, the matrix

concatenated by the ith (i ≤ s) columns across all frequencies is
R

(−Kmax)
i1 · · · R

(k)
i1 · · · R

(Kmax)
i1

...
...

...
. . .

...

R
(−Kmax)
iM · · · R

(k)
iM · · · R

(Kmax)
iM

 =
1√
s
×


e−ιKmax(θ∗i −θ∗1) · · · eιk(θ

∗
i −θ∗1) · · · eιKmax(θ∗i −θ∗1)

0 · · · 0 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0

 .

The cluster assignment of i can be acquired by finding the non-sparse row

of the above matrix, and the phase angle can be determined by evaluating

the non-sparse row (e.g., FFT). When the observation A is noisy, (6.15)

and (6.16) are used to estimate the cluster structure and associated phase

angles, which can be interpreted as checking the consistency or conducting

majority vote among all frequencies. The performance is expected to be at

least as good as the CPQR-type algorithm. This is because each Φ(k) has

the same theoretical guarantee as the CPQR-type algorithm according to

Theorem 6.1, and (6.15) (6.16) are just checking the consistency across all

frequencies. In Section 6.5, we will show that our proposed spectral method

based on the MF-CPQR factorization is capable of significantly outperform-

ing the CPQR-type algorithm.
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Algorithm 6.2: MF-CPQR factorization

Input: The set of eigenvectors
{(

Φ(k)
)}Kmax

k=−Kmax

Init: Q(k) ← IM , R(k) ←
(
Φ(k)

)⊤
,∀i = −Kmax, . . . ,Kmax, and ΠN ← IN

1 for m = 1, 2, . . . ,M do
/* Pivot selection */

2 for j = m,m+ 1, . . . , N do

3 Compute the residual ρj ←
∑Kmax

k=−Kmax
∥R(k)

m:, j∥2
4 end
5 Determine the pivot j∗ ← argmaxj=m,...,N ρj
6 For both {R(k)}K−1

k=1 and ΠN , swap the mth column with the pivot (j∗th)
column

/* One step QR factorization for all frequencies */

7 for k = −Kmax, . . . ,Kmax do

8 Apply one step QR factorization in Algorithm 6.3 on R
(k)
m:,m:, and get

Q̃
(k)
m:,m: and R̃

(k)
m:,m:

9 Update Q
(k)
m ←

[
Im−1 0

0 Q̃
(k)
m:,m:

]
10 Update R

(k)
m:,m: ← R̃

(k)
m:,m: and Q(k) ← Q(k)Q

(k)
m

11 end

12 end

Output: {Q(k)}Kmax

k=−Kmax
, {R(k)}Kmax

k=−Kmax
, and ΠN

Besides, for the joint estimation problem with continuous phase angles,

(6.15) and (6.16) will be modified as

M̂(i)← argmax
m∈[M ]

{
max

θi∈[0,2π)

Kmax∑
k=−Kmax

〈
eιkθi ,R

(k)
mi

〉}
,

θ̂i ← argmax
θi∈[0,2π)

Kmax∑
k=−Kmax

〈
eιkθi ,R

(k)

M̂(i)i

〉
.

Solving the max problem over [0, 2π) is infeasible in general. Instead, one can

apply the zero-padding and FFT for an approximate solution with any de-

sired precision. Specifically, in estimating the cluster assignment, by padding

zeros to [R
(−Kmax)
mi , . . . ,R

(k)
mi , . . . ,R

(Kmax)
mi ] as [0, . . . , 0,R

(−Kmax)
mi , . . . ,R

(k)
mi , . . . ,

R
(Kmax)
mi , 0, . . . , 0], taking the FFT, and finding the entry with largest real

part, (arg)maxθi∈[0,2π)
∑Kmax

k=−Kmax

〈
eιkθi ,R

(k)
mi

〉
can be solved approximately,

where the precision is determined by the number of padded zeros.
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Algorithm 6.3: One step QR factorization using Householder
transformation
Input: A matrix X ∈ Cn×n

/* Householder transformation */

1 r ←X·,1
2 θ ← −eι∠r1∥r∥, where ∠r1 is the phase angle of r1
3 u← r − θe, where e = [1, 0, . . . , 0]⊤

4 v ← u/∥u∥

5 Q← In − 2vvH

6 X ← QX

7 X1,· ← e−ι∠X11X1,·
8 Q·,1 ← eι∠X11Q·,1

Output: Q and R.

6.3.2 MF-CPQR Factorization

As stated in Definition 6.2, the difference between the ordinary QR factor-

ization and the CPQR factorization is selecting appropriate pivot ordering

(encoded in ΠN). The CPQR factorization attempts to find a subset of

columns that are as most linearly independent as possible and are used to

determine the basis. In this chapter, the CPQR factorization across multiple

frequencies is developed to cope with the multi-frequency structure of the

MLE formulation.

Definition 6.4 (Multi-frequency column-pivoted QR factorization). Let X(k) ∈
Cm×n with m ≤ n has rank m for k = −Kmax, . . . , Kmax. The multi-frequency

column-pivoted QR factorization of X(k) is the factorization

X(k)Πn = Q(k)
[
R

(k)
1 , R

(k)
2

]
,

as computed via Algorithm 6.2 where Πn ∈ {0, 1}n×n is a permutation matrix

fixed for all k = −Kmax, . . . , Kmax, Q
(k) is a unitary matrix, R

(k)
1 is an upper

triangular matrix, and R
(k)
2 ∈ Cm×(n−m).

It requires to i) obtain the same subset of columns among all frequencies

that are as most linearly independent as possible, and ii) use the same pivot

ordering (or ΠN) among all frequencies. The former promotes the cluster

structure estimation performance because each node i (other than the piv-

ots) is assigned to a cluster mainly according to the similarities between the

column i and the columns of pivots: the latter ensures the validity of (6.15)

and (6.16).

106



The MF-CPQR factorization is detailed in Algorithm 6.2, where the House-

holder transform [226] (Algorithm 6.3) is adopted for a better numerical sta-

bility. Specifically, the novel MF-CPQR factorization is different from the

ordinary CPQR [232, 225] in the pivot selection. The pivot is determined by

finding the column with the largest summation of ℓ2 norm of residuals over

all frequencies (see line 3 in Algorithm 6.2).

Table 6.2: The computational complexity of Algorithm 6.1 in each step.

Steps Computational Complexity
1. Eigendecomposition O(Kmax|E|)
2. MF-CPQR factorization O(KmaxN)
3. Clustering by (6.15) O(NKmax logKmax)
4. Phase synchronization by (6.16) O(N)
Total complexity O(Kmax(|E|+N logKmax))

6.3.3 Computational Complexity

In this section, the computational complexity of Algorithm 6.1 is summarized

step by step in Table 6.2. Here, we suppose M = Θ(1). First, it consists

of O(Kmax) times of eigendecomposition for M eigenvectors, which is O(|E|)
per time if using Lanczos method [233]. For the MF-CPQR factorization, it

consists of M times of column pivoting (O(NKmax) per time) and MKmax

times of one step QR factorization (O(N) per step). In terms of recovering

the cluster structure, we first compute MN times of FFT for length-Kmax

vectors (O(Kmax logKmax) per vector) and then compute the maximums

(O(NKmax)+O(N)). Since the FFT of {R(k)}Kmax
k=−Kmax

is already computed,

it is only O(N) for synchronizing the phase angles. Overall, the computa-

tional cost is linear with the number of edges |E| and nearly linear in Kmax.

When the network G is densely connected with |E| = O(N2), Algorithm 6.1

ends up with O(KmaxN
2) if logKmax < N . However, if |E| = o(N2), the

complexity of Algorithm 6.1 will be reduced. For instance, in the case when

|E| = O(N logN) or |E| = O(N), which is very common as shown in [234],

the complexity of Algorithm 6.1 will be O(KmaxN max{logN, logKmax}) or
O(KmaxN logKmax}), respectively.
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Algorithm 6.4: Iterative multi-frequency generalized power
method
Input: The observation matrix A, the initialization {Sm}Mm=1 and {θi ∈ Ω}Ni=1,

and the number of iterations T
1 Construct {V̂ (k),0}Kmax

k=−Kmax
using {Sm}Mm=1 and {θi ∈ Ω}Ni=1 according to (6.10)

2 for t = 0, 1, . . . , T − 1 do
/* Matrix multiplication */

3 For k = −Kmax, . . . ,Kmax, compute the matrix multiplication

V̂ (k),t+1 ← A(k)V̂ (k),t

/* Combine information across multiple frequencies */

4 Compute V̂ max,t+1 ∈ RN×M , whose (i,m)th entry satisfies

V̂ max,t+1
im ← max

θi∈Ω

Kmax∑
k=−Kmax

〈
eιkθi , V̂

(k),t+1
im

〉
(6.21)

/* Recovery of the cluster structure and associated phase angles

*/

5 For each node i ∈ [N ], assign its cluster assignment as

M̂(i)← argmax
m∈[M ]

Ĥt+1
i,· , where Ĥt+1 ← PH(V̂ max,t+1)

then estimate the associated phase angle given the estimated cluster
assignment M̂(i)

θ̂i ← argmax
θi∈Ω

Kmax∑
k=−Kmax

〈
eιkθi , V̂

(k),t+1

iM̂(i)

〉
(6.22)

6 Construct {V̂ (k),t+1}Kmax

k=−Kmax
using {M̂(i)}Ni=1 and {θ̂i}Ni=1 according

to (6.10)
7 end

Output: Estimated cluster structure {M̂(i)}Ni=1 and estimated phase angles

{θ̂i}Ni=1

6.4 Iterative Multi-Frequency Generalized Power

Method

In addition to the spectral method based on the MF-CPQR factorization

proposed in Section 6.3, we develop an iterative multi-frequency general-

ized power method for the joint estimation problem which is inspired by the

generalized power method [2] and the“multi-frequency” nature of the MLE

formulation (6.9).
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6.4.1 Detailed Steps and Motivations

Since the joint estimation problem is non-convex, the iterative multi-frequency

generalized power method requires a good initialization of the cluster struc-

ture and associated phase angles that are sufficiently close to the ground

truth. Various spectral algorithms (e.g., CPQR-type algorithm [1, Algo-

rithm 1], [2, Algorithm 3], and Algorithm 6.1) can be used for initialization.

It is observed experimentally that random initialization will result in con-

vergence to a sub-optimal solution. Each iteration of Algorithm 6.4 consists

of three main steps. The first step (line 3) is the matrix multiplication be-

tween A(k) and V̂ (k),t for all k = −Kmax, . . . , Kmax (line 4). Then we leverage

(line 4) V̂ (k),t+1 across all frequencies to aggregate and refine the information

needed for the joint estimation problem (6.21) which is inspired by (6.15).

The last step is estimating the cluster structure and associated phase angles.

As mentioned before, giving V̂ max,t+1 and then finding the corresponding

cluster assignment is equal to solving the MCAP (see Definition 6.3). This

is equivalent to projecting V̂ max,t+1 onto the feasible set H (line 5), after

which the matrix Ĥ t+1 is obtained. The reason why the projection P(·) is
needed rather than directly using the index of the largest entry in each row

of V̂ max,t+1 is because the solution of the latter approach does not necessarily

satisfy the constraint based on the size of each cluster. The associated phase

angles can be recovered according to the recovered cluster structure (6.22).

Besides, the modification of the iterative MF-GPM for the joint estimation

problem with continuous phase angles is the same as that of the spectral

method based on the MF-CPQR factorization.

The iterative GPM in [118, Liu et al., 20] is built upon the classical power

method which is used to compute the leading eigenvectors of a matrix. The

method in [118, Liu et al., 20] adds an important step: projection onto the

feasible set that is induced by the constraints on the cluster structure and

phase angles. The iterative MF-GPM introduced here takes a step further

by not only taking advantage of the efficiency of the power method and the

projection, but also leveraging the information across multiple frequencies. In

Section 6.5, numerical experiments show that the iterative MF-GPM largely

outperforms GPM [2].
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Table 6.3: The computational complexity of Algorithm 6.4 in each step.

Steps Computational Complexity
1. Initialization O(|E|)
2. Matrix multiplication O(Kmax|E|)
3. Combine information O(NKmax logKmax)
4. Estimation O(N logN)
Total complexity O(Kmax|E|+N(logN +Kmax logKmax))

6.4.2 Computational Complexity

In this section, we compute the complexity of Algorithm 6.4 step by step

in Table 6.3. Again, here we assume M = Θ(1). In terms of initializa-

tion, the CPQR-type algorithm [1] is O(|E|). The matrix multiplication step

consists of O(Kmax) times of matrix multiplication (O(|E|) per time). In or-

der to combine information across multiple frequencies, we need to compute

MN times of FFT of length-Kmax vectors (O(Kmax logKmax) per vector).

For estimating cluster structure and associated phase angles, we first need

to project V̂ max,t+1 onto H, which is O(N logN). Then complexity of es-

timating the cluster structure and associated phase angles using Ĥ t+1 is

negligible. When the network G is densely connected with |E| = O(N2),

Algorithm 6.4 ends up with O(KmaxN
2) if N > logKmax. However, if |E| =

o(N2), for example O(N logN) and O(N), the complexity will be reduced to

O(KmaxN max{logN, logKmax}) and O(N max{logN,Kmax logKmax}), re-
spectively. As a result, the computational complexity of Algorithm 6.4 is

very similar to Algorithm 6.1.

6.5 Numerical Experiments

This section deals with numerical experiments of the spectral method based

on the MF-CPQR factorization (Algorithm 6.1) and the iterative MF-GPM

(Algorithm 6.4) to showcase their performance against state-of-the-art bench-

mark algorithms1. For comparison, the benchmark algorithms are chosen as

i) the CPQR-type algorithm [1], ii) the GPM [2], where both of them can

be modified identically from the joint community and group synchroniza-

tion problem into the joint community detection and phase synchronization

1Codes are available at https://github.com/LingdaWang/Joint_Community_

Detection_and_Phase_Synchronization
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(a) SRER, CPQR (b) EPS, CPQR

(c) SRER, MF-CPQR (d) EPS, MF-CPQR

Figure 6.2: Comparison between the CPQR-type algorithm [1] (in the first
row) and the spectral method based on the MF-CPQR factorization (in the
second row) in terms of SRER and EPS, where a smaller black area in each
figure indicates a better performance. Experiments are conducted with the
setting M = 2, N = 1000, and Kmax = 16. (a) and (c): SRER (6.23) under
varying α in p = α logn/n and β in q = β logn/n; (b) and (d): EPS (6.24)
under varying α and β.

problem. Specifically, algorithms in [1, 2] are single frequency version of our

proposed algorithms which can be realized by replacing the summation over

k in (6.15), (6.16), (6.21), and (6.22) with k = 1.

In each experiment, we generate the observation matrix A using the prob-

abilistic model, SBM-Ph, as discussed in Section 6.2 and estimate the cluster

structure and associated phase angles by the spectral algorithms based on

the MF-CPQR factorization, the iterative MF-GPM, and the benchmark al-

gorithms. To evaluate the numerical results, we defined two metrics, success

rate of exact recovery (SRER) and error of phase synchronization (EPS),

for recovering the cluster structure and associated phase angles. In terms of
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(a) SRER, GPM (b) EPS, GPM

(c) SRER, MF-GPM (d) EPS, MF-GPM

Figure 6.3: Comparison between the GPM [2] (in the first row) and the
iterative MF-GPM (in the second row) in terms of SRER and EPS, where a
smaller black area in each figure indicates a better performance.
Experiments are conducted with the same setting as Figure 6.2. (a) and
(c): SRER (6.23) under varying α in p = α logn/n and β in q = β logn/n; (b)
and (d): EPS (6.24) under varying α and β.

SRER, it shows the rate of algorithms exactly recover the cluster structure.

Let Ŝm = {i ∈ [N ]|M̂(i) = m} be the set of nodes assigned into the mth

cluster by algorithms, and we have that

SRER = the rate {Ŝm}Mm=1 is identical to {Sm}Mm=1. (6.23)

As for the EPS, it assesses the performance of recovering phase angles. We

define θ∗,(m) = [eιθ
∗
i ]i∈S∗

m
∈ Cs for each cluster that concatenates the ground

truth θ∗i for all i ∈ S∗
m, and similarly θ̂(m) = [eιθ̂i ]i∈S∗

m
∈ Cs for the estimated

phase angles. Then, after removing the ambiguity with aligning θ̂(m) with
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(a) SRER, CPQR (b) EPS, CPQR (c) SRER, GPM (d) EPS, GPM

(e) SRER, MF-CPQR-5 (f) EPS, MF-CPQR-5 (g) SRER, MF-GPM-5 (h) EPS, MF-GPM-5

(i) SRER, MF-CPQR-10 (j) EPS, MF-CPQR-10 (k) SRER, MF-GPM-10 (l) EPS, MF-GPM-10

(m) SRER, MF-CPQR-20 (n) EPS, MF-CPQR-20 (o) SRER, MF-GPM-20 (p) EPS, MF-GPM-20

Figure 6.4: Results for the joint estimation problem with continuous phase
angles in [0, 2π) using the CPQR-type algorithm [1], the GPM [2], the
spectral method based on the MF-CPQR factorization, and the iterative
MF-GPM, where a smaller black area in each figure indicates better
performance. The choice of M and N are the same as Figure 6.2. The first
and third columns show the SRER, and the second and fourth columns
shows EPS. (a), (b), (c), and (d): The results of the CPQR-type
algorithm [1] and the GPM [2]; (e), (f), (g), and (h): The results of the
spectral method based on the MF-CPQR factorization and the iterative
MF-GPM with Kmax = 5; (i), (j), (k), and (l): The results of the spectral
method based on the MF-CPQR factorization and the iterative MF-GPM
with Kmax = 10; (m), (n), (o), and (p): The results of the spectral method
based on the MF-CPQR factorization and the iterative MF-GPM with
Kmax = 20.

θ∗,(m) in each cluster as

γ(m) = argmin
g(m)∈Ω or [0,2π)

∥θ̂(m)eιg
(m) − θ∗,(m)∥2, ∀m = 1, . . . ,M,
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the EPS is defined as

EPS = max
m∈[M ]

max
i∈S∗

m

{min(|θ̂i + γ(m) − θ∗i |, 2π − |θ̂i + γ(m) − θ∗i |)}. (6.24)

The EPS is actually the maximum error of estimated phase angles among all

nodes. Besides, both the SRER and EPS are computed over 20 independent

and identical realizations for each experiment in the following. In the rest

of this section, we first present the results of the joint estimation problem

in Section 6.5.1 and followed by the extension to continuous phase angles in

Section 6.5.2.

6.5.1 Results of the Joint Estimation Problem

We first show the results of the spectral method based on the MF-CPQR fac-

torization (Algorithm 6.1) against the CPQR-type algorithm [1] on the joint

estimation problem, where the case of M = 2, s = 500, and Kmax = 16 is

considered. Similar to [1, 2], we test the recovery performance in the regime

p, q = O( logn/n), where different p = α logn/n and q = β logn/n with varying α

and β are included. In Figure 6.2, we show SRER (6.23) and EPS (6.24). As

one can observe from Figure 6.2a and 6.2c, our proposed spectral method

based on the MF-CPQR factorization outperforms the CPQR-type algo-

rithm [1] in SRER. EPS follows a similar pattern.

Next, we test the performance of the iterative MF-GPM (Algorithm 6.4)

against the GPM [2] under the same choice of M , s, and Kmax as before.

Since the GPM and the iterative MF-GPM require initialization that is close

enough to the ground truth, we can choose either [2, Algorithm 3] or the

CPQR-type algorithm [1]. We set the number of iterations to be 50 as sug-

gested by [2]. Again, as one can observe from Figure 6.3, our proposed

iterative MF-GPM achieves higher accuracy in both SRER and EPS. Sur-

prisingly, one may also notice the region where p is small and q is large

(top left area in Figure 6.3c), the iterative MF-GPM is capable of recovering

the cluster structure with high probability: however, this is not the case in

recovering associated phase angles.

When comparing the results shown in Figure 6.2 and 6.3 together, the

spectral method based on the MF-CPQR factorization shows very similar

result as the iterative MF-GPM which are both significantly better than the
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GPM [2] and the CPQR-type algorithm [1]. However, compared to the itera-

tive MF-GPM, the spectral method based on the MF-CPQR factorization is

free of initialization. One may also observe the performance of the GPM [2]

outperform the CPQR-type algorithm [1].

6.5.2 Results with Continuous Phase Angles

In this section, we show the results of our proposed algorithms against bench-

mark algorithms on the joint estimation problem with continuous phase an-

gles. As mentioned in Section 6.2.3, the algorithms tested in Section 6.5.1 can

be directly applied after simple modification (See Section 6.3.1 for details),

and thus we choose the similar setting as Section 6.5.1. Besides, since (6.13)

is a truncated MLE formulation of the true one (6.11), experiments of the

spectral method based on the MF-CPQR factorization and the iterative MF-

GPM with different Kmax are conducted to study the trend of the results as

Kmax grows. The results are detailed in Figure 6.4 with very similar per-

formance as shown in Figure 6.2 and 6.3. In addition, as Kmax grows, the

cluster structure recovery and phase synchronization become more accurate

in both MF-CPQR based method and iterative MF-GPM.

To choose a suitable Kmax for the continuous phase angles, we need to

consider the trade-off between the performance and the computational com-

plexity. We observe that the estimation accuracy is improved as Kmax in-

creases. On the other hand, the computational complexity scales linearly

with Kmax. In addition, the computational complexity also depends on the

number of nodes N and the number of clusters M , which needs to be taken

into consideration for the trade-off between accuracy and efficiency. Thus, it

is difficult to state a simple optimal policy for choosing Kmax for the continu-

ous phase angles. Despite this, we have shown that our methods outperform

the CPQR-type algorithm and the GPM as long as Kmax ≥ 1, and moreover

largely outperform other baseline algorithms when Kmax ≥ 10. Therefore,

our choice of Kmax is between 10 to 30 for most cases.
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CHAPTER 7

ALMOST TUNE FREE VARIANCE
REDUCTION

7.1 Preliminaries

Notation. In Chapter 7, bold lowercase letters denote column vectors; E
represents expectation; ∥x∥ stands for the ℓ2-norm of x; and ⟨x,y⟩ denotes
the inner product of vectors x and y.

We will first focus on the averaging techniques, whose generality goes be-

yond BB step sizes. To start with, this section briefly reviews the vanilla

SVRG and SARAH while their BB variants are postponed slightly.

7.1.1 Basic Assumptions

Assumption 7.1. Each fi : Rd → R has L-Lipchitz gradient, that is,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥,∀x,y ∈ Rd.

Assumption 7.2. Each fi : Rd → R is convex.

Assumption 7.3. Function f : Rd → R is µ-strongly convex, that is, there

exists µ > 0, such that f(x)−f(y) ≥ ⟨∇f(y),x−y⟩+ µ
2
∥x−y∥2, ∀x,y ∈ Rd.

Assumption 7.4. Each fi : Rd → R is µ-strongly convex, meaning there

exists µ > 0, so that fi(x)−fi(y) ≥ ⟨∇fi(y),x−y⟩+ µ
2
∥x−y∥2, ∀x,y ∈ Rd.

Assumption 7.1 requires each loss function to be sufficiently smooth. One

can certainly require smoothness of each individual loss function and refine

Assumption 7.1 as fi has Li-Lipchitz gradient. Clearly L = maxi Li. By

combining with importance sampling [235, 236, 237], such a refined assump-

tion can slightly tighten the κ dependence in the complexity bound. How-

ever, since the extension is straightforward, we will keep using the simpler

Assumption 7.1 for clarity. Assumption 7.3 only requires f to be strongly
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convex which is weaker than Assumption 7.4. Assumptions 7.1 – 7.4 are all

standard in variance reduction algorithms.

7.1.2 Recap of SVRG and SARAH

Algorithm 7.1: SVRG

1: Initialize: x̃0, η, m, S

2: for s = 1, 2, . . . , S do

3: xs
0 = x̃s−1

4: gs = ∇f(xs
0)

5: for k = 0, 1, . . . ,m− 1 do

6: uniformly draw ik ∈ [n]

7: vs
k = ∇fik(xs

k)−∇fik(xs
0) + gs

8: xs
k+1 = xs

k − ηvs
k

9: end for

10: select x̃s randomly from {xs
k}mk=0 following ps

11: end for

12: Output: x̃S

Algorithm 7.2: SARAH

1: Initialize: x̃0, η, m, S

2: for s = 1, 2, . . . , S do

3: xs
0 = x̃s−1, and vs

0 = ∇f(xs
0)

4: xs
1 = xs

0 − ηvs
0

5: for k = 1, 2, . . . ,m− 1 do

6: uniformly draw ik ∈ [n]

7: vs
k = ∇fik(xs

k)−∇fik(xs
k−1) + vs

k−1

8: xs
k+1 = xs

k − ηvs
k

9: end for

10: select x̃s randomly from {xs
k}mk=0 following ps

11: end for

12: Output: x̃S

The steps of SVRG and SARAH are listed in Algorithm 7.1 and 7.2, re-

spectively. Each employs a fine-grained reduced-variance gradient estimate

per iteration. For SVRG, vs
k is an unbiased estimate since E[vs

k|F s
k−1] =

∇f(xs
k), where F s

k−1 := σ(x̃s−1, i0, i1, . . . , ik−1) is the σ-algebra generated by

x̃s−1, i1, i2, . . . , ik−1; while SARAH adopts a biased vs
k, that is, E[vs

k|F s
k−1] =
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∇f(xs
k) − ∇f(xs

k−1) + vs
k−1 ̸= ∇f(xs

k). The variance (mean-square error

(MSE)) of vs
k in SVRG (SARAH) can be upper bounded by quantities that

dictate the optimality gap (gradient norm square).

Lemma 7.1. [128, 132] The MSE of vs
k in SVRG is bounded as follows:

SVRG : E
[
∥∇f(xs

k)− vs
k∥2
]
≤ E

[
∥vs

k∥2
]

≤ 4LE
[
f(xs

k)− f(x∗)
]
+ 4LE

[
f(xs

0)− f(x∗)
]
.

The MSE of vs
k in SARAH is also bounded as

SARAH : E
[
∥∇f(xs

k)− vs
k∥2
]
≤ ηL

2− ηL

(
E
[
∥∇f(xs

0)∥2
]
− E

[
∥vs

k∥2
])

.

Another upper bound on SVRG’s gradient estimate is available; see e.g.,

[236], but it is not suitable for our analysis. Intuitively, Lemma 7.1 suggests

that if SVRG or SARAH converges, the MSE of their gradient estimates also

approaches to zero.

At the end of each inner loop, the starting point of the next outer loop

is randomly selected among {xs
k}mk=0 according to a pmf vector ps ∈ ∆m+1,

where ∆m+1 := {p ∈ Rm+1
+ |⟨1,p⟩ = 1}. We term ps the averaging weight

vector, and let psj denote the jth entry of ps. Leveraging the MSE bounds

in Lemma 7.1 and choosing a proper averaging vector, SVRG and SARAH

iterates for strongly convex problems can be proved to converge linearly.

For SVRG, two types of averaging exist.

• U-Avg (SVRG) [128]: vector ps is chosen as the pmf of an (al-

most) uniform distribution; that is, psm = 0, and psk = 1/m for k =

{0, 1, . . . ,m − 1}. Under Assumptions 7.1 – 7.3, the choice of η =

O(1/L) and m = O(κ) ensures that SVRG iterates converge linearly.1

• L-Avg (SVRG) [140, 238]: Only the last iteration is used for av-

eraging by setting x̃s = xs
m; or equivalently, by setting psm = 1, and

psk = 0,∀k ̸= m. Under Assumptions 7.1 – 7.3, linear convergence is

ensured by choosing η = O(1/(Lκ)) and m = O(κ2).

1For simplicity and clarity of exposition we only highlight the order of η and m, and
hide other constants in big-O notation. Detailed choices can be found in the corresponding
references.
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To guarantee linear convergence, SVRG with L-Avg must adopt a much

smaller η and larger m compared with U-Avg. L-Avg with such a small step

size leads to complexity O
(
(n+ κ2) ln 1

ϵ

)
that has worse dependence on κ.

For SARAH, there are also two averaging options.

• U-Avg (SARAH) [132]: here ps is selected to have entries psm =

0, and psk = 1/m, for k = {0, 1, . . . ,m − 1}. Linear convergence is

guaranteed with complexity O
(
(n + κ) ln 1

ϵ

)
under Assumptions 7.1 –

7.3 so long as one selects η = O(1/L) and m = O(κ).

• L-Avg (SARAH) [136]: here ps is chosen with entries psm−1 = 1 and

psk = 0, ∀k ̸= m−1. Under Assumptions 7.1 – 7.3 and with η = O(1/L)
as well as m = O(κ2), linear convergence is guaranteed at complexity

of O
(
(n+ κ2) ln 1

ϵ

)
. When both Assumptions 7.1 and 7.4 hold, setting

η = O(1/L) and m = O(κ) results in linear convergence along with a

reduced complexity of order O
(
(n+ κ) ln 1

ϵ

)
.

U-Avg (for both SVRG and SARAH) is usually employed as a “proof-

trick” to carry out convergence analysis, while L-Avg is implemented most

of the times. However, we will argue in the next section that with U-Avg

adapted to the step size choice, it is possible to improve empirical perfor-

mance. Although U-Avg appears at first glance to waste updates, a simple

trick in the implementation can fix this issue.

Implementation of Averaging. Rather than updating m times and

then choosing x̃s according to Line 10 of SVRG or SARAH, one can gener-

ate a random integer M s ∈ {0, 1, . . . ,m} according to the averaging weight

vector ps. Having available xs
Ms , it is possible to start the next outer loop

immediately.

7.2 Weighted Averaging for SVRG and SARAH

This section introduces weighted averaging for SVRG and SARAH which

serves as an intermediate step for the ultimate tune-free variance reduction.

Such an averaging for SVRG will considerably tighten its analytical conver-

gence rate, while for SARAH it will improve its convergence rate whenm or η

is chosen sufficiently large. These analytical results are obtained by reexam-

ining SVRG and SARAH through the estimate sequence (ES), a tool that has
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been used for analyzing momentum schemes [125]; see also [239, 240, 236].

Different from existing ES analysis that relies heavily on the unbiasedness of

vs
k, our advances here will endow ES with the ability to deal with the biased

gradient estimate of SARAH.

7.2.1 Estimate Sequence

Since in this section we will focus on a specific inner loop indexed by s, the

superscript s is dropped for brevity. For example, xs
k and vs

k are written as

xk and vk, respectively.

Associated with the ERM objective f and a particular point x0, consider

a series of quadratic functions {Φk(x)}mk=0 that comprise what is termed ES,

with the first one given by

Φ0(x) = Φ∗
0 +

µ0

2
∥x− x0∥2, (7.2a)

and the rest defined recursively as

Φk(x) =(1− δk)Φk−1(x) + δk

[
f(xk−1) + ⟨vk−1,x− xk−1⟩+

µ

2
∥x− xk−1∥2

]
,

where vk−1 is the gradient estimate in SVRG or SARAH while Φ∗
0, µ0, and

δk are some constants to be specified later. The design is similar to that of

[236], but the ES here is constructed per inner loop. In addition, here we

will overcome the challenge of analyzing SARAH’s biased gradient estimate

vk.

Upon defining Φ∗
k := minx Φk(x), the key properties of the sequence

{Φk(x)}mk=0 are collected in the next lemma.

Lemma 7.2. For {Φk(x)}mk=0 as in (7.2), it holds that: i) Φ0(x) is µ0-

strongly convex, and Φk(x) is µk-strongly convex with µk = (1−δk)µk−1+δkµ;

ii) xk minimizes Φk(x) if δk = ηµk; and iii) Φ∗
k = (1− δk)Φ

∗
k−1+ δkf(xk−1)−

µkη
2

2
∥vk−1∥2.

Lemma 7.2 holds for both SVRG and SARAH. To better understand the

role of ES, it is instructive to use an example.

Example. With Φ∗
0 = f(x0), µ0 = µ, and δk = µkη for SVRG, it holds that

µk = µ,∀k, and δk = µη,∀k. If for convenience we let δ := µη, we show in
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Section 7.5.2 that

E
[
Φk(x)

]
≤ (1− δ)k

[
Φ0(x)− f(x∗)

]
+ f(x). (7.3)

As k →∞, one has (1−δ)k → 0, and hence Φk(x) approaches in expectation

a lower bound of f(x).

Now, we are ready to view SVRG and SARAH through the lens of

{Φk(x)}mk=0 to obtain new averaging schemes.

7.2.2 Weighted Averaging for SVRG

The new averaging vector ps for SVRG together with the improved conver-

gence rate is summarized in the following theorem.

Theorem 7.1. (SVRG with W-Avg.) Under Assumptions 7.1 – 7.3,

construct the ES as in (7.2) with µ0 = µ, δk = µkη, and Φ∗
0 = f(x0). Choose

η < 1/(4L), and m large enough such that

λSVRG :=
1

1− (1− µη)m−1

[
(1− µη)m

1− 2ηL
+

2µLη2(1− µη)m−1

1− 2Lη
+

2Lη

1− 2Lη

]
< 1.

Let ps0 = psm = 0, and psk = (1 − µη)m−k−1/q for k = 1, 2, . . . ,m − 1, where

q = [1 − (1 − µη)m−1]/(µη). It then holds for SVRG with this weighted

averaging (W-Avg) that

E
[
f(x̃s)− f(x∗)

]
≤ λSVRGE

[
f(x̃s−1)− f(x∗)

]
.

Comparing the W-Avg in Theorem 7.1 against U-Avg and L-Avg, we saw

in Section 7.1.2, the upshot of W-Avg is a much tighter convergence rate.

When choosing η = O(1/L), the dominating terms of the convergence rate

for W-Avg are O
( (1−1/κ)m

1−2Lη
+ 2Lη

1−2Lη

)
, and O

(
κ

m(1−2Lη)
+ 2Lη

1−2Lη

)
for U-Avg [128].

Clearly, the factor (1 − 1/κ)m in W-Avg can be much smaller than κ/m in

U-Avg; see Figure 7.1(a) for comparison of convergence rates of different

averaging types. Since convergence of SVRG with L-Avg requires η and

m to be chosen differently from those in U-Avg and W-Avg, L-Avg is not

plotted in Figure 7.1(a).

Next, we assess the complexity of SVRG with W-Avg.
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Figure 7.1: A comparison of the analytical convergence rate for SVRG and
SARAH. In both figures we set κ = 105 with L = 1, µ = 10−5, and the step
sizes are selected as: (a) SVRG with η = 0.1/L; and (b) SARAH with
η = 0.5/L.

Corollary 7.1. Choosing m = O(κ) and other parameters as in Theorem

7.1, the complexity of SVRG with W-Avg to find x̃s satisfying E
[
f(x̃s) −

f(x∗)
]
≤ ϵ is O

(
(n+ κ) ln 1

ϵ

)
.

Note that similar to U-Avg, W-Avg incurs lower complexity compared

with L-Avg.

7.2.3 Weighted Averaging for SARAH

SARAH is challenging to analyze due to the bias present in the estimate

vk, which makes the ES-based treatment of SARAH fundamentally different

from that of SVRG. To see this, it is useful to start with the following lemma.

Lemma 7.3. For any deterministic x, it holds in SARAH that

E
[
⟨vk −∇f(xk),x− xk⟩

]
=

η

2

k−1∑
τ=0

E
[
∥vτ −∇f(xτ )∥2 + ∥vτ∥2 − ∥∇f(xτ )∥2

]
.

Lemma 7.3 reveals the main difference in the ES-based argument for

SARAH, namely that E
[
⟨vk − ∇f(xk),x − xk⟩

]
̸= 0, while the same inner

product for SVRG equals to 0 in expectation. Reflecting back to (7.3), the

consequence of having a non-zero E
[
⟨vk −∇f(xk),x− xk⟩

]
is that E[Φk(x)]

123



is not necessarily approaching a lower bound of f(x) as k →∞; thus,

E
[
Φk(x)

]
≤ (1− δ)k

[
Φ0(x)− f(x)

]
+ f(x) + C, (7.4)

where C is a non-zero term that is not present in (7.3) when applied to

SVRG; see detailed derivations in Section 7.5.2.

Interestingly, upon capitalizing on the properties of vk, the ensuing theo-

rem establishes linear convergence for SARAH with a proper W-Avg vector

ps.

Theorem 7.2. (SARAH with W-Avg.) Under Assumptions 7.1 and 7.4,

define the ES as in (7.2) with µ0 = µ, δk = µkη,∀k, and Φ∗
0 = f(x0). With

δ := µη, select η < 1/L and m large enough, so that

λSARAH :=

[
(1−δ)m −

(
1− 2ηL

1+κ

)m] L+µ

c(L−µ)

+
(1−δ)m

cδ
+

ηL(m−1)
c(2−ηL)

+
2−2ηL
2−ηL

1 + κ

2cηL
< 1,

where c = m− 1
δ
+ (1−δ)m

δ
. Setting pk = (1−(1−δ)m−k−1)/c,∀k = 0, 1, . . . ,m−

2, and pm−1 = pm = 0, SARAH with this W-Avg satisfy

E
[
∥∇f(x̃s)∥2

]
≤ λSARAHE

[
∥∇f(x̃s−1)∥2

]
.

The expression of λSARAH is complicated because we want the upper bound

of the convergence rate to be as tight as possible. To demonstrate this with

an example, choosing η = 1/(2L) and m = 5κ, we have λSARAH ≈ 0.8. Figure

7.1(b) compares SARAH with W-Avg versus SARAH with U-Avg and L-

Avg. The advantage of W-Avg is more pronounced as m is chosen larger.

As far as complexity of SARAH with W-Avg, it is comparable with that

of L-Avg or U-Avg, as asserted next.

Corollary 7.2. Choosing m = O(κ) and other parameters as in Theorem

7.2, the complexity of SARAH with W-Avg to find x̃s satisfying

E[∥∇f(x̃s)∥2] ≤ ϵ, is O
(
(n+ κ) ln 1

ϵ

)
.

A few remarks are now in order on our analytical findings: i) most existing

ES-based proofs use E[f(x̃s) − f(x∗)] as optimality metric, while Theorem

7.2 and Corollary 7.2 rely on E[∥∇f(x̃s)∥2]; ii) the analysis method still holds
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Figure 7.2: SARAH’s analytical convergence with different averaging
options (κ = 105, L = 1, µ = 10−5, and fixed m = 10κ).

when Assumption 7.4 is weakened to Assumption 7.3, at the price of having

worse κ-dependence of the complexity, that is, O
(
(n + κ2) ln 1

ϵ

)
, which is of

the same order as L-Avg under Assumptions 7.1 – 7.3 [136].

7.2.4 Averaging Is More Than A “Proof Trick”

Existing forms of averaging such as U-Avg and W-Avg are typically consid-

ered “proof tricks” for simplifying the theoretical analysis [128, 132, 136].

In this section, we contend that averaging can distinctly affect performance

and should be adapted to other parameters. We will take SARAH with

η = O(1/L) and m = O(κ) as an example, rather than SVRG since such pa-

rameter choices guarantee convergence regardless of the averaging employed.

For SVRG with L-Avg on the other hand, the step size has to be chosen

differently with W-Avg or U-Avg.

We will first look at the convergence rate of SARAH across different aver-

aging options. Fixing m = O(κ) and changing η, the theoretical convergence

rate is plotted in Figure 7.2. It is observed that with smaller step sizes, L-

Avg enjoys faster convergence, while larger step sizes tend to favor W-Avg

and U-Avg instead.

Next, we will demonstrate empirically that the type of averaging indeed

matters. Consider binary classification using the regularized logistic loss

function

f(x) =
1

n

∑
i∈[n]

ln
[
1 + exp(−bi⟨ai,x⟩)

]
+

µ

2
∥x∥2, (7.5)

125



0 10 20 30 40
#grad/n

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100
SARAH U-Avg
SARAH L-Avg
SARAH W-Avg

gr
ad

 n
or

m

0 10 20 30 40
#grad/n

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100
SARAH U-Avg
SARAH L-Avg
SARAH W-Avg

gr
ad

 n
or

m

(a) η = 0.9/L (b) η = 0.6/L

0 10 20 30 40
#grad/n

10 5

10 4

10 3

10 2

10 1

SARAH U-Avg
SARAH L-Avg
SARAH W-Avg

gr
ad

 n
or

m

(c) η = 0.06/L

Figure 7.3: Comparing SARAH with different types of averaging on dataset
w7a (µ = 0.005 and m = 5κ in all experiments).

where (ai, bi) is the (feature, label) pair of datum i. Clearly, (7.5) is an

instance of the cost in (1.3) with fi(x) = ln
[
1 + exp(−bi⟨ai,x⟩)

]
+ µ

2
∥x∥2;

it can be readily verified that Assumptions 7.1 and 7.4 are satisfied in this

case.

SARAH with L-Avg, U-Avg, and W-Avg are tested with fixed (moderate)

m = O(κ) but different step size choices on the dataset w7a; see also Section

7.8.1 for additional experiments with datasets a9a and diabetes. Figure 7.3(a)

shows that for a large step size η = 0.9/L, W-Avg outperforms U-Avg as

well as L-Avg by almost two orders at the 30th sample pass. For a medium

step size η = 0.6/L, W-Avg and L-Avg perform comparably, while both are

outperformed by U-Avg. When η is chosen small, L-Avg is clearly the winner.

In short, the performance of averaging options varies with the step sizes. This

is intuitively reasonable because the MSE of vk: i) scales with η (cf. Lemma

7.1), and ii) tends to increase with k as E[∥vk∥2] decreases linearly (see

Lemma 7.5 in Section 7.6.2 and the MSE bound in Lemma 7.1). As a result,

when both η and k are large, the MSE of vk tends to be large too. Iterates

with gradient estimates having high MSE can jeopardize the convergence.
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This explains the inferior performance of L-Avg in Figure 7.3(a) and 7.3(b).

On the other hand, when η is chosen small, the MSE tends to be small as

well; hence, working with L-Avg does not compromise convergence, while in

expectation W-Avg and U-Avg compute full gradient more frequently than

L-Avg. These two reasons explain the improved performance of L-Avg in

Figure 7.3(c).

When we fix η and change m, as depicted in Figure 7.1(b), the analytical

convergence rate of W-Avg improves over that of U-Avg and L-Avg when m

is large. This is because the MSE of vk increases with k. W-Avg and U-Avg

ensure better performance through “early ending”, by reducing the number

of updates that utilize vk with large MSE.

In sum, the choice of averaging scheme should be adapted with η and m to

optimize performance. For example, the proposed W-Avg for SARAH favors

the regime where either η orm is chosen large, as dictated by the convergence

rates and corroborated by numerical experiments.

7.3 Tune-Free Variance Reduction

This section copes with variance reduction without tuning. In particular, i)

BB step size, ii) averaging schemes, and iii) a time varying inner loop length

are adopted for the best empirical performance.

7.3.1 Recap of BB Step Sizes

Aiming to develop “tune-free” SVRG and SARAH, we will first adopt the

BB scheme to obtain suitable step sizes automatically. In a nutshell, BB

monitors progress of previous outer loops and chooses the step size of outer

loop s accordingly via

ηs =
1

θκ

∥x̃s−1 − x̃s−2∥2〈
x̃s−1 − x̃s−2,∇f(x̃s−1)−∇f(x̃s−2)

〉 , (7.6)

where θκ is a κ-dependent parameter to be specified later. Note that∇f(x̃s−1)

and∇f(x̃s−2) are computed at the outer loops s and s−1, respectively; hence,
the implementation overhead of BB step sizes only includes almost negligible

memory to store x̃s−2 and ∇f(x̃s−2).
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Figure 7.4: (a) Performance of BB-SVRG under different choices of m. (b)
Performance of BB-SARAH with different averaging schemes. Both
experiments use dataset a9a with κ = 1, 388.

BB step sizes for SVRG with L-Avg have relied on θκ = m = O(κ2). Such

a choice of parameters offers provable convergence at complexity O
(
(n +

κ2) ln 1
ϵ

)
, but has not been effective in our simulations for two reasons: i)

step size ηs depends on m, which means that tuning is still required for step

sizes, and ii) the optimal m of O(κ) with best empirical performance signifi-

cantly deviates from the theoretically suggested O(κ2); see also Figure 7.4(a).

Other BB-based variance reduction methods introduce extra parameters to

be tuned in additional to m. This prompts us to design more practical BB

methods; how to choose m with minimal tuning is also of major practical

value.

7.3.2 Averaging for BB Step Sizes

We start with a fixed choice of m to theoretically investigate different types

of averaging for the BB step sizes. The final “tune-free” implementation of

SVRG and SARAH will rely on the analysis of this section.

Proposition 7.1. (BB-SVRG) Under Assumptions 7.1 – 7.3, if we choose

m = O(κ2) and θκ = O(κ) (but with θκ > 4κ), then BB-SVRG with U-Avg

and W-Avg can find x̃s with E
[
f(x̃s)−f(x∗)

]
≤ ϵ using O

(
(n+κ2) ln 1

ϵ

)
IFO

calls.

Similar to BB-SVRG, the ensuing result asserts that for BB-SARAH, W-

Avg, U-Avg, and L-Avg have identical order of complexity.
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Proposition 7.2. (BB-SARAH) Under Assumptions 7.1 and 7.4, if we

choose m = O(κ2) and θκ = O(κ), then BB-SARAH finds a solution with

E
[
∥∇f(x̃s)∥2

]
≤ ϵ using O

(
(n + κ2) ln 1

ϵ

)
IFO calls, when one of these con-

ditions holds: i) either U-Avg with θκ > κ; or ii) L-Avg with θκ > 3/2κ; or,

iii) W-Avg with θκ > κ.

The price paid for having automatically tuned step sizes is a worse depen-

dence of the complexity on κ, compared with the bounds in Corollaries 7.1

and 7.2. The cause of the worse dependence on κ is that one has to choose

a large m at the order of O(κ2). However, such an automatic tuning of the

step size comes almost as a “free lunch” when problem (1.3) is well condi-

tioned, or in the big data regime, e.g., κ2 ≈ n or κ2 ≪ n, since the dominant

term in complexity is O(n ln 1
ϵ
) for both SVRG and BB-SVRG. On the other

hand, it is prudent to stress that with κ2 ≫ n, the BB step sizes slow down

convergence.

Given the same order of complexity, the empirical performance of BB-

SARAH with different averaging types is showcased in Figure 7.4(b) with

the parameters chosen as in Proposition 7.2. It is observed that W-Avg

converges most rapidly, while U-Avg outperforms L-Avg. This confirms our

theoretical insight, that is, W-Avg and U-Avg are more suitable when m is

chosen large enough.

7.3.3 Tune-Free Variance Reduction

Next, the ultimate format of the almost tune-free variance reduction is pre-

sented using SARAH as an example. We will discuss how to choose the

iteration number of inner loops and averaging schemes for BB step sizes.

Adaptive inner loop length. It is observed that the BB step size can

change over a wide range of values (see Section 7.7 for derivations),

1

θκL
≤ ηs ≤ 1

θκµ
. (7.7)

Given θκ = O(κ), ηs can vary from O(µ/L2) to O(1/L). Such a wide range

of ηs blocks the possibility to find a single m suitable for both small and large

ηs at the same time. From a theoretical perspective, choosing m = O(κ2)

in both Propositions 7.1 and 7.2 is mainly for coping with the small step
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sizes ηs = O(1/(Lθκ)). But such a choice is too pessimistic for large ones

ηs = O(1/(µθκ)). In fact, choosing m = O(κ) for ηs = O(1/L) is good

enough, as suggested by Corollaries 7.1 and 7.2. These observations motivate

us to design an ms that changes dynamically per outer loop s.

Reflecting on the convergence of SARAH, it is sufficient to set the inner

loop length ms according to the ηs used. To highlight the rationale behind

our choice of ms, let us consider BB-SARAH with U-Avg as an example

that features convergence rate λs = 1
µηsms + ηsL

2−ηsL
[132]. Set θκ > κ as in

Proposition 7.2 so that the second term of λs is always less than 1. With a

large step size ηs = O(1/L), and by simply choosing ms = O
(
1/(µηs)

)
, one

can ensure a convergent iteration having e.g., λs < 1. With a small step size

ηs = O
(
1/(κL)

)
though, choosing ms = O

(
1/(µηs)

)
also leads to λs < 1.

These considerations prompt us to adopt a time-varying inner loop length

adjusted by ηs in (7.6) as

ms =
c

µηs
. (7.8)

Such choices of ηs and ms at first glance do not lead to a tune-free algorithm

directly because one has to find an optimal θκ and c through tuning. Fortu-

nately, there are simple choices for both c and θκ. In Propositions 7.1 and

7.2, the smallest selected θκ for SVRG and SARAH with different types of

averaging turns out to be a reliable choice, while choosing c = 1 has been

good enough throughout our numerical experiments. Although the selection

of these parameters violates slightly the theoretical guarantee, its merits lie

in the simplicity. And in our experiments, no divergence has been observed

by these parameter selections.

Averaging schemes. As discussed in Section 7.2.4, W-Avg gains in

performance when either ms or ηs is large. Since ms and ηs are inversely

proportional (cf. (7.8)), it is clear that one of the two suffices to be large,

and for this reason, we will rely on W-Avg for BB-SARAH.

Extensions regarding almost tune-free variance reduction for (non)convex

problems can be found in our technical note [241].
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Figure 7.5: experiments of BB-SVRG and BB-SARAH on different datasets.

7.4 Numerical Experiments

To assess performance, the proposed tune-free BB-SVRG and BB-SARAH

are applied to binary classification via regularized logistic regression (cf.

(7.5)) using the datasets a9a, rcv1.binary, and real-sim from LIBSVM2. De-

tails regarding the datasets, the µ values used, and implementation details

are deferred to Section 7.8.2.

For comparison, the selected benchmarks are SGD, SVRG with U-Avg,

and SARAH with U-Avg. The step size for SGD is η = 0.05/(L(ne + 1))

where ne is the index of epochs. For SVRG and SARAH, we fix m = 5κ

and tune for the best step sizes. For BB-SVRG, we choose ηs and ms as

(7.8) with θκ = 4κ (as in Proposition 7.1) and c = 1. We choose θκ = κ (as

in Proposition 7.2) and c = 1 for BB-SARAH. W-Avg is adopted for both

BB-SVRG and BB-SARAH.

The results are showcased in Figure 7.5. We also tested BB-SVRG with

parameters chosen as [140, Theorem 3.8]. However it only slightly outper-

forms SGD and hence is not plotted here (see the blue line in Figure 7.4(a)

2Online available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/binary.html.
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as a reference). On dataset a9a, BB-SARAH outperforms tuned SARAH.

BB-SVRG is worse than SVRG initially but has similar performance around

the 40th sample pass on the x-axis. On dataset rcv1 however, BB-SARAH,

BB-SVRG and SARAH have similar performance, improving over SVRG.

On dataset real-sim, BB-SARAH performs almost identical to SARAH. BB-

SVRG exhibits comparable performance with SVRG.

7.5 Properties of ES

7.5.1 Proof of Lemma 7.2

i) By definition, Φ0(x) is µ0-strongly convex, and by checking Hessian one

can find that Φk(x) is µk-strongly convex with µk = (1− δk)µk−1 + δkµ.

ii) Clearly, x0 minimizes Φ0(x), and Φk(x) is quadratic. Arguing by induc-

tion, suppose that xk−1 minimizes Φk−1(x), to obtain

Φk−1(x) = Φ∗
k−1 +

µk−1

2
∥x− xk−1∥2 ⇒ ∇Φk−1(x) = µk−1(x− xk−1).

By definition of Φk(x), we also have

∇Φk(x) = (1− δk)∇Φk−1(x) + δkvk−1 + µδk(x− xk−1)

= (1− δk)µk−1(x− xk−1) + δkvk−1 + µδk(x− xk−1). (7.9)

Using µk = (1 − δk)µk−1 + δkµ and setting ∇Φk(x) = 0, we find that xk

minimizes Φk(x) when δk = ηµk.

iii) Since xk−1 minimizes Φk−1(x), using the definition of Φk(x) we can write

Φk(xk−1) = (1− δk)Φ
∗
k−1 + δkf(xk−1). (7.10)

On the other hand, we also have Φk(xk−1) = Φ∗
k+

µk

2
∥xk−1−xk∥2. Comparing

this with (7.10) and using that xk = xk−1 − ηvk−1, completes the proof of

this property.
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7.5.2 Derivations of (7.3) and (7.4)

To verify (7.3), proceed as follows

E
[
Φk(x)

]
= (1− δ)E

[
Φk−1(x)

]
+ δE

[
f(xk−1) + ⟨vk−1,x− xk−1⟩+

µ

2
∥x− xk−1∥2

]
= (1− δ)E

[
Φk−1(x)

]
+ δE

[
f(xk−1) + ⟨∇f(xk−1),x− xk−1⟩+

µ

2
∥x− xk−1∥2

]
≤ (1− δ)E

[
Φk−1(x)

]
+ δf(x)

≤ (1− δ)k
[
Φ0(x)− f(x)

]
+ f(x)

≤ (1− δ)k
[
Φ0(x)− f(x∗)

]
+ f(x). (7.11)

And in order to derive (7.4), follow the next steps

E
[
Φk(x)

]
= (1− δ)E

[
Φk−1(x)

]
+ δE

[
f(xk−1) + ⟨vk−1,x− xk−1⟩+

µ

2
∥x− xk−1∥2

]
≤ (1− δ)E

[
Φk−1(x)

]
+ δf(x) + δE

[
⟨vk−1 −∇f(xk−1),x− xk−1⟩

]
≤ (1− δ)k

[
Φ0(x)− f(x)

]
+ f(x)

+ δ
k−1∑
τ=0

(1− δ)τE
[
⟨vk−1−τ −∇f(xk−1−τ ),x− xk−1−τ ⟩

]
︸ ︷︷ ︸

:=C; C ̸=0, an extra term compared with SVRG

.

7.5.3 A Key Lemma

The next lemma plays a major role in our analysis.

Lemma 7.4. If we choose µ0 = µ, δk = µkη, and Φ∗
0 = f(x0) in the ES

defined in (7.2), we then find that: i) µk = µ,∀k; ii) δ := δk = µη; and iii)

the following inequality holds

δ
k−1∑
τ=1

(1− δ)k−τ−1
[
f(xτ )− f(x∗)

]
+ (1− δ)k−1

[
f(x0)− f(x∗)

]
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≤ (1− δ)k
[
Φ0(x

∗)− f(x∗)
]
+

µη2

2

k∑
τ=1

(1− δ)k−τ∥vτ−1∥2

+ δ
k∑

τ=1

(1− δ)k−τζτ−1,

where ζk−1 := ⟨vk−1 −∇f(xk−1),x
∗ − xk−1⟩.

Proof. Since i) and ii) are straightforward to verify, we will prove iii). Using

property iii) in Lemma 7.2, we find

f(xk)− Φ∗
k = f(xk)− (1− δk)Φ

∗
k−1 − δkf(xk−1) +

µkη
2

2
∥vk−1∥2

= f(xk)− Φ∗
k−1 + δk

(
Φ∗

k−1 − f(xk−1)
)
+

µkη
2

2
∥vk−1∥2

= f(xk)− f(xk−1) + f(xk−1)− Φ∗
k−1

+ δk
(
Φ∗

k−1 − f(xk−1)
)
+

µkη
2

2
∥vk−1∥2

= (1− δk)
[
f(xk−1)− Φ∗

k−1

]
+ ξk, (7.12)

where ξk is defined as

ξk := f(xk)− f(xk−1) +
µkη

2

2
∥vk−1∥2.

Upon expanding f(xk−1)− Φ∗
k−1 in (7.12), we have

f(xk)− Φ∗
k = (1− δk)

[
f(xk−1)− Φ∗

k−1

]
+ ξk

=
[ k∏
τ=1

(1− δτ )
]
[f(x0)− Φ∗

0] +
k∑

τ=1

ξτ

[ k∏
j=τ+1

(1− δj)
]
, (7.13)

from which we deduce that

Φ∗
k ≤ Φk(x

∗) = (1− δk)Φk−1(x
∗)

+ δk

[
f(xk−1) + ⟨vk−1,x

∗ − xk−1⟩+
µ

2
∥x∗ − xk−1∥2

]
(a)
= (1− δk)Φk−1(x

∗)

+ δk

[
f(xk−1) + ⟨∇f(xk−1),x

∗ − xk−1⟩+
µ

2
∥x∗ − xk−1∥2 + ζk−1

]
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(b)

≤ (1− δk)Φk−1(x
∗) + δkf(x

∗) + δkζk−1

≤
[ k∏
τ=1

(1− δτ )
]
Φ0(x

∗) +
k∑

τ=1

δτf(x
∗)
[ k∏
j=τ+1

(1− δj)
]

+
k∑

τ=1

δτζτ−1

[ k∏
j=τ+1

(1− δj)
]
, (7.14)

where in (a) the ζk−1 is defined as

ζk−1 := ⟨vk−1 −∇f(xk−1),x
∗ − xk−1⟩;

and (b) follows from the strongly convexity of f . Then, using (7.13), we have

f(xk)− f(x∗) = Φ∗
k − f(x∗) +

[ k∏
τ=1

(1− δτ )
]
[f(x0)− Φ∗

0]

+
k∑

τ=1

ξτ

[ k∏
j=τ+1

(1− δj)
]

(c)

≤
[ k∏
τ=1

(1− δτ )
]
Φ0(x

∗) +
k∑

τ=1

δτf(x
∗)
[ k∏
j=τ+1

(1− δj)
]

+
k∑

τ=1

δτζτ−1

[ k∏
j=τ+1

(1− δj)
]
− f(x∗)

+
[ k∏
τ=1

(1− δτ )
]
[f(x0)− Φ∗

0] +
k∑

τ=1

ξτ

[ k∏
j=τ+1

(1− δj)
]
,

where (c) is due to (7.14). Choosing µ0 = µ (hence µk = µ, δk = µη := δ, ∀k)
and Φ∗

0 = f(x0), we arrive at

f(xk)− f(x∗) ≤ (1− δ)k
[
Φ0(x

∗)− f(x∗)
]
+

k∑
τ=1

(1− δ)k−τ
(
ξτ + δζτ−1

)
.

(7.15)

Now consider that

k∑
τ=1

(1− δ)k−τξτ =
k∑

τ=1

(1− δ)k−τ
[
f(xτ )− f(xτ−1) +

µη2

2
∥vτ−1∥2

]
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= f(xk) +
k−1∑
τ=1

(1− δ)k−τf(xτ )−
k−1∑
τ=1

(1− δ)k−τ−1f(xτ )

− (1− δ)k−1f(x0) +
µη2

2

k∑
τ=1

(1− δ)k−τ∥vτ−1∥2

= −δ
k−1∑
τ=1

(1− δ)k−τ−1f(xτ ) + f(xk)− (1− δ)k−1f(x0)

+
µη2

2

k∑
τ=1

(1− δ)k−τ∥vτ−1∥2. (7.16)

Because δ
∑k−1

τ=1(1−δ)k−τ−1+(1−δ)k−1 = 1, we can write f(x∗) = [δ
∑k−1

τ=1(1−
δ)k−τ−1 + (1− δ)k−1]f(x∗). Using the latter, plugging (7.16) into (7.15), and

eliminating f(xk), we obtain

δ
k−1∑
τ=1

(1− δ)k−τ−1
[
f(xτ )− f(x∗)

]
+ (1− δ)k−1

[
f(x0)− f(x∗)

]
≤ (1− δ)k

[
Φ0(x

∗)− f(x∗)
]
+

µη2

2

k∑
τ=1

(1− δ)k−τ∥vτ−1∥2

+ δ
k∑

τ=1

(1− δ)k−τζτ−1, (7.17)

which completes the proof.

7.6 Proofs for SVRG and SARAH

7.6.1 Proof for SVRG

Proof of Theorem 7.1

Proof. Since the choices of µ0, Φ
∗
0, and δk coincide with those in Lemma 7.4,

we can directly apply Lemma 7.4 to find

δ
k−1∑
τ=1

(1− δ)k−τ−1
[
f(xτ )− f(x∗)

]
+ (1− δ)k−1

[
f(x0)− f(x∗)

]
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≤ (1− δ)k
[
Φ0(x

∗)− f(x∗)
]
+

µη2

2

k∑
τ=1

(1− δ)k−τ∥vτ−1∥2

+ δ
k∑

τ=1

(1− δ)k−τζτ−1, (7.18)

where ζk−1 := ⟨vk−1 − ∇f(xk−1),x
∗ − xk−1⟩. Upon defining the σ-algebra

Fk−1 = σ(i0, i1, . . . , ik−1), and using that vk is an unbiased estimate of

∇f(xk), it follows readily that

E[ζk|Fk−1] = E
[
vk −∇f(xk),x

∗ − xk⟩|Fk−1

]
= 0,

which further implies

E[ζk] = 0. (7.19)

Now taking expectation on both sides of (7.18) and using (7.19), we have

δ
k−1∑
τ=1

(1− δ)k−τ−1E
[
f(xτ )− f(x∗)

]
+ (1− δ)k−1E

[
f(x0)− f(x∗)

]
(7.20)

≤ (1− δ)kE
[
Φ0(x

∗)− f(x∗)
]
+

µη2

2

k∑
τ=1

(1− δ)k−τE
[
∥vτ−1∥2

]
(a)

≤ (1− δ)kE
[
Φ0(x

∗)− f(x∗)
]

+ 2µLη2
k−1∑
τ=0

(1− δ)k−τ−1E
[
f(xτ )− f(x∗) + f(x0)− f(x∗)

]
(b)

≤ (1− δ)kE
[
Φ0(x

∗)− f(x∗)
]

+ 2µLη2
k−1∑
τ=0

(1− δ)k−τ−1E
[
f(xτ )− f(x∗)

]
+

2µLη2

δ
E
[
f(x0)− f(x∗)

]
,

where in (a) we used Lemma 7.1 to E[∥vτ−1∥2], and (b) holds because∑k−1
τ=0(1−δ)k−τ−1 ≤ 1/δ. Note that we can use Φ0(x

∗) = f(x0)+
µ
2
∥x0−x∗∥2

together with (1− δ)k−1 > (1− δ)k, to eliminate (1− δ)k−1E[f(x0)− f(x∗)]
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on the LHS of (7.20). Rearranging the terms, we arrive at

(δ − 2µLη2)
k−1∑
τ=1

(1− δ)k−τ−1E
[
f(xτ )− f(x∗)

]
≤ µ

2
(1− δ)kE

[
∥x0 − x∗∥2

]
+ 2µLη2(1− δ)k−1E

[
f(x0)− f(x∗)

]
+

2µLη2

δ
E
[
f(x0)− f(x∗)

]
≤
[
(1− δ)k + 2µLη2(1− δ)k−1 +

2µLη2

δ

]
E
[
f(x0)− f(x∗)

]
, (7.21)

where the last inequality is due to µ
2
∥x− x∗∥ ≤ f(x)− f(x∗). Now choosing

η < 1/2L so that δ − 2µLη2 > 0, we have

k−1∑
τ=1

(1− δ)k−τ−1E
[
f(xτ )− f(x∗)

]
≤
[

(1− δ)k

δ − 2µLη2
+

2µLη2(1− δ)k−1

δ − 2µLη2
+

2µLη2

δ(δ − 2µLη2)

]
E
[
f(x0)− f(x∗)

]
.

With p0 = pm = 0, and pk = (1 − δ)m−k−1/q, k = 1, 2, . . . ,m − 1, where

q = [1− (1− δ)m−1]/δ (with δ = µη), we find

E
[
f(x̃s)− f(x∗)

]
=

m−1∑
τ=1

(1− δ)m−τ−1

q
E
[
f(xτ )− f(x∗)

]
≤ 1

q

[
(1− δ)m

δ − 2µLη2
+

2µLη2(1− δ)m−1

δ − 2µLη2
+

2µLη2

δ(δ − 2µLη2)

]
E
[
f(x̃s−1)− f(x∗)

]
=

1

1− (1− µη)m−1

[
(1− µη)m

1− 2ηL
+

2µLη2(1− µη)m−1

1− 2Lη
+

2Lη

1− 2Lη

]
︸ ︷︷ ︸

:=λSVRG

× E
[
f(x̃s−1)− f(x∗)

]
. (7.22)

Thus, so long as we choose a large enough m and η < 1/(4L), we have

λSVRG < 1, that is, SVRG converges linearly.

Proof of Corollary 7.1

Proof. Choose η = 1/(8L) and m = 3
µη

+ 1 = 24κ+ 1 ≥ 25. We have that

(1− µη)
1
µη ≤ 0.4 ⇒ (1− µη)m ≤ (0.4)3
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(Actually (1− µη)
1
µη ≈ 1/e when µη is small enough). Using the value of η

and m, it can be verified that λSVRG ≤ 0.5. This implies that O
(
ln 1

ϵ

)
outer

loops are needed for an ϵ-accurate solution. And since m = O(κ), the overall
complexity is O

(
(n+ κ) ln 1

ϵ

)
.

7.6.2 Proofs for SARAH

Proof of Lemma 7.3

Proof. Let Fk−1 = σ(i1, i2, . . . , ik−1), then for any x we have

E
[
⟨vk −∇f(xk),x− xk⟩|Fk−1

]
= E

[
⟨∇fik(xk)−∇fik(xk−1) + vk−1 −∇f(xk), x− xk⟩|Fk−1

]
= ⟨vk−1 −∇f(xk−1), x− xk⟩

= ⟨vk−1 −∇f(xk−1), x− xk−1 + xk−1 − xk⟩

= ⟨vk−1 −∇f(xk−1), x− xk−1⟩+ η⟨vk−1 −∇f(xk−1), vk−1⟩

= ⟨vk−1 −∇f(xk−1), x− xk−1⟩

+
η

2

[
∥vk−1∥2 + ∥vk−1 −∇f(xk−1)∥2 − ∥∇f(xk−1)∥2

]
,

where the last equation is because 2⟨a,b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2. Since
v0 = ∇f(x0), we have ⟨v0 − ∇f(x0),x − x0⟩ = 0. The proof is completed

after taking expectation and unrolling ⟨vk−1 −∇f(xk−1),x− xk−1⟩.

In order to prove Theorem 7.2, we need to borrow the following result from

[132].

Lemma 7.5. [132, Theorem 1b] If Assumptions 7.1 and 7.4 hold, with η ≤
2/(µ+ L), SARAH guarantees

E
[
∥vk∥2

]
≤
(
1− 2ηL

1 + κ

)k

E
[
∥∇f(x0)∥2

]
.

Proof of Theorem 7.2.

Proof. With the choices of µ0, Φ
∗
0 and δk as in Lemma 7.4, we can directly
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apply Lemma 7.4 to confirm that

(1− δ)k−1
[
f(x0)− f(x∗)

]
+ δ

k−1∑
τ=1

(1− δ)k−τ−1
[
f(xτ )− f(x∗)

]
≤ (1− δ)k

[
Φ0(x

∗)− f(x∗)
]
+

µη2

2

k∑
τ=1

(1− δ)k−τ∥vτ−1∥2

+
k∑

τ=1

δ(1− δ)k−τ ⟨vτ−1 −∇f(xτ−1),x
∗ − xτ−1⟩

= (1− δ)k
[
Φ0(x

∗)− f(x∗)
]
+

µη2

2

k∑
τ=1

(1− δ)k−τ∥vτ−1∥2

+
k∑

τ=2

δ(1− δ)k−τ ⟨vτ−1 −∇f(xτ−1),x
∗ − xτ−1⟩,

where the last equation holds because v0 = ∇f(x0). Since Φ0(x
∗) = f(x0)+

µ
2
∥x0 − x∗∥2 ≤ f(x0) +

1
2µ
∥∇f(x0)∥2 and (1 − δ)k−1 > (1 − δ)k, we can

eliminate (1− δ)k−1E[f(x0)− f(x∗)] on the LHS, to obtain the inequality

δ
k−1∑
τ=1

(1− δ)k−τ−1
[
f(xτ )− f(x∗)

]
≤ (1− δ)k

2µ
∥∇f(x0)∥2 +

µη2

2

k∑
τ=1

(1− δ)k−τ∥vτ−1∥2

+
k∑

τ=2

δ(1− δ)k−τ ⟨vτ−1 −∇f(xτ−1),x
∗ − xτ−1⟩.

Taking expectation on both sides, we arrive at

0 ≤ δ
k−1∑
τ=1

(1− δ)k−τ−1E
[
f(xτ )− f(x∗)

]
(7.23)

≤ (1− δ)k

2µ
E
[
∥∇f(x0)∥2

]
+

µη2

2

k∑
τ=1

(1− δ)k−τE
[
∥vτ−1∥2

]
+

k∑
τ=2

δ(1− δ)k−τE
[
⟨vτ−1 −∇f(xτ−1),x

∗ − xτ−1⟩
]
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=
(1−δ)k

2µ
E
[
∥∇f(x0)∥2

]
+

µη2

2

k∑
τ=1

(1−δ)k−τE
[
∥vτ−1∥2

]
+

k−1∑
τ=1

δ(1−δ)k−1−τE
[
⟨vτ −∇f(xτ ),x

∗ − xτ ⟩
]

≤ (1−δ)k

2µ
E
[
∥∇f(x0)∥2

]
+

µη2

2

k∑
τ=1

(1−δ)k−τE
[
∥vτ−1∥2

]
+

δη

2

k−1∑
τ=1

(1−δ)k−1−τ
τ−1∑
j=0

E
[
∥vj −∇f(xj)∥2 + ∥vj∥2 − ∥∇f(xj)∥2

]
,

where for the last inequality, we used Lemma 7.3. Changing the summation

order in the last term of the RHS of (7.23), yields

δη

2

k−1∑
τ=1

(1− δ)k−1−τ

τ−1∑
j=0

E
[
∥vj −∇f(xj)∥2 + ∥vj∥2 − ∥∇f(xj)∥2

]
=

δη

2

k−2∑
τ=0

E
[
∥vτ −∇f(xτ )∥2 + ∥vτ∥2 − ∥∇f(xτ )∥2

][ k−τ−2∑
j=0

(1− δ)τ
]

≤ η

2

k−2∑
τ=0

(
E
[
∥vτ −∇f(xτ )∥2

]
+ E

[
∥vτ∥2

])

− η

2

k−2∑
τ=0

(
1− (1− δ)k−τ−1

)
E
[
∥∇f(xτ )∥2

]
. (7.24)

Now plugging (7.24) into (7.23), and rearranging the terms, we find

η

2

k−2∑
τ=0

(
1− (1− δ)k−1−τ

)
E
[
∥∇f(xτ )∥2

]
≤ (1−δ)k

2µ
E
[
∥∇f(x0)∥2

]
+

µη2

2

k∑
τ=1

(1− δ)k−τE
[
∥vτ−1∥2

]
+

η

2

k−2∑
τ=0

(
E
[
∥vτ −∇f(xτ )∥2

]
+ E

[
∥vτ∥2

])
.

Dividing both sides by η/2 (and recalling that δ = µη), we arrive at

k−2∑
τ=0

(
1− (1− δ)k−τ−1

)
E
[
∥∇f(xτ )∥2

]
(7.25)

141



≤ (1−δ)k

µη
E
[
∥∇f(x0)∥2

]
+ δ

k∑
τ=1

(1− δ)k−τE
[
∥vτ−1∥2

]
+

k−2∑
τ=0

(
E
[
∥vτ −∇f(xτ )∥2

]
+ E

[
∥vτ∥2

])
(a)

≤ (1−δ)k

µη
E
[
∥∇f(x0)∥2

]
+ δ

k∑
τ=1

(1−δ)k−τE
[
∥vτ−1∥2

]
+

ηL(k−1)
2− ηL

E
[
∥∇f(x0)∥2

]
+

2−2ηL
2−ηL

k−2∑
τ=0

E
[
∥vτ∥2

]
(b)

≤ (1−δ)k

µη
E
[
∥∇f(x0)∥2

]
+δ

k∑
τ=1

(1−δ)k−τE
[
∥vτ−1∥2

]
+
ηL(k−1)
2− ηL

E
[
∥∇f(x0)∥2

]
+
2−2ηL
2−ηL

1+κ

2ηL
E
[
∥∇f(x0)∥2

]
(c)

≤ (1− δ)k

µη
E
[
∥∇f(x0)∥2

]
+

[
(1− δ)k −

(
1− 2ηL

1 + κ

)k]L+ µ

L− µ
E
[
∥∇f(x0)∥2

]
+

ηL(k − 1)

2− ηL
E
[
∥∇f(x0)∥2

]
+

2− 2ηL

2− ηL

1 + κ

2Lη
E
[
∥∇f(x0)∥2

]
,

where in (a) we applied Lemma 7.1 to deal with E[∥∇f(xτ )−vτ∥2]; in (b) we

chose η < 1/L and used Lemma 7.5 to handle E[∥vτ∥2] in the last term; and

the derivation of (c) is as follows. First, notice that 2ηL/(1 + κ) > µη = δ,

which implies that 1− δ > 1− [2ηL/(1 + κ)]. Then, leveraging Lemma 7.5,

we have

δ
k∑

τ=1

(1− δ)k−τE
[
∥vτ−1∥2

]
≤ δ

k∑
τ=1

(1− δ)k−τ

(
1− 2ηL

1 + κ

)τ−1

E
[
∥∇f(x0)∥2

]
=

[
(1− δ)k −

(
1− 2ηL

1 + κ

)k]L+ µ

L− µ
E
[
∥∇f(x0)∥2

]
.

To proceed, define

c :=
m−2∑
τ=0

(
1− (1− δ)m−τ−1

)
= (m− 1)− (1− δ)− (1− δ)m

δ

= m− 1

δ
+

(1− δ)m

δ
,

and select m large enough so that c > 0. Upon setting pk = (1 − (1 −
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δ)m−k−1)/c,∀k = 0, 1, . . . ,m− 2, and pm−1 = pm = 0, we have

E
[
∥∇f(x̃s)∥

]
=

1

c

m−2∑
τ=0

(
1− (1− δ)m−τ−1

)
E
[
∥∇f(xτ )∥2

]
≤
[
(1−δ)m

cµη
+

(
(1−δ)m −

(
1− 2ηL

1+κ

)m) L+µ

c(L−µ)︸ ︷︷ ︸
+
ηL(m−1)
c(2−ηL)

+
2−2ηL
2−ηL

1 + κ

2cηL

]
︸ ︷︷ ︸

:=λSARAH

E
[
∥∇f(x̃s−1)∥2

]
.

Selecting η < 1/L and m large enough to let λSARAH < 1 establishes SARAH’s

linear convergence. For example, choosing η = 1/(2L) and m = 5κ, we have

λSARAH ≈ 0.8.

Proof of Corollary 7.2

Proof. If we choose η = 1/(2L) and m = 6κ = 3/(µη), we have δ = 1/(2κ)

and c ≥ 4κ, which implies that

(1− µη)
1
µη ≤ 0.4

(actually (1 − µη)
1
µη ≈ 1/e when µη small enough). Using the value of η

and m, it can be verified that λSVRG ≤ 0.75. This implies that O
(
ln 1

ϵ

)
outer

loops are needed for an ϵ-accurate solution. Since m = O(κ), the overall

complexity is O
(
(n+ κ) ln 1

ϵ

)
.

7.7 Proofs for BB-SVRG and BB-SARAH

Derivation of (7.7): It is clear that

ηs =
1

θκ

∥x̃s−1 − x̃s−2∥2〈
x̃s−1 − x̃s−2,∇f(x̃s−1)−∇f(x̃s−2)

〉 ≤ 1

θκ

∥x̃s−1 − x̃s−2∥2

µ∥x̃s−1 − x̃s−2∥2
=

1

θκµ
,

where the inequality follows since under Assumption 7.3 (or 7.4) ⟨∇f(x) −
∇f(y),x − y⟩ ≥ µ∥x − y∥2 [125, Theorem 2.1.9]. On the other hand, we
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have

ηs ≥ 1

θκ

∥x̃s−1 − x̃s−2∥2

∥x̃s−1 − x̃s−2∥∥∇f(x̃s−1)−∇f(x̃s−2)
∥∥ ≥ 1

θκL
,

where the first inequality follows from the Cauchy-Schwarz inequality, and

the second inequality is due to Assumption 7.1.

7.7.1 Proof for Proposition 7.1

For BB-SVRG, the step size ηs changes across different inner loops. Since ηs

influences convergence, we will use λs to denote the convergence rate of the

inner loop s, that is, E[f(x̃s)− f(x∗)] ≤ λsE[f(x̃s−1)− f(x∗)].

BB-SVRG with U-Avg:

Proof. From [128], we have the convergence rate is

λs =
1

µηs(1− 2ηsL)m
+

2ηsL

1− 2ηsL

(a)

≤ κθκ
m(1− 2κ/θκ)

+
2κ/θκ

1− 2κ/θκ
,

where (a) is due to (7.7). Hence, by choosing θκ > 4κ with θκ = O(κ)
and m = O(κ2) such that λs < 1, and using similar arguments as in the

proof of Corollary 7.1, one can readily verify that the complexity is O
(
(n+

κ2) ln 1
ϵ

)
.

BB-SVRG with W-Avg:

Proof. It follows from Theorem 7.1 and (7.7) that the convergence rate sat-

isfies

λs =
1

1− (1− µηs)m−1

[
(1− µηs)m

1− 2ηsL
+

2µL(ηs)2(1− µη)m−1

1− 2Lηs
+

2Lηs

1− 2Lηs

]
≤ 1

1−
(
1− 1

κθκ

)m−1

[(
1− 1

κθκ

)m
1− 2κ/θκ

+

2κ
(θκ)2

(
1− 1

κθκ

)m−1

1− 2κ/θκ
+

2κ/θκ
1− 2κ/θκ

]
,

where the inequality is due to (7.7). Hence, by choosing θκ > 4κ with

θκ = O(κ) and m = O(κ2) so that λs < 1, and using similar arguments

as in the proof of Corollary 7.1, one can establish that the complexity is

O
(
(n+ κ2) ln 1

ϵ

)
.
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7.7.2 Proof for Proposition 7.2

Also for BB-SARAH, the step size ηs changes across different inner loops.

Since here too ηs affects convergence, we will use λs to denote the convergence

rate of the inner loop s; that is, E[∥f(x̃s)∥2] ≤ λsE[∥f(x̃s−1)∥2].
BB-SARAH with U-Avg:

Proof. We have from [132] that the convergence rate is

λs =
1

µηsm
+

ηsL

2− ηsL

(a)

≤ κθκ
m

+
κ/θκ

2− κ/θκ
,

where (a) is due to (7.7). Hence, by choosing θκ > κ with θκ = O(κ) and

m = O(κ2) so that λs < 1, and using arguments similar to those in the proof

of Corollary 7.2, one can establish that the complexity is O
(
(n+κ2) ln 1

ϵ

)
.

BB-SARAH with L-Avg:

Proof. Since the derivation in [136] relies on Assumption 7.3, we will first

establish the convergence rate under Assumption 7.4. The proof proceeds

along the lines of [136], except for the use of Lemma 7.5 to bound E[∥vs
t∥]2.

After a simple derivation, one can have the convergence rate

λs =
2ηsL

2− ηsL
+ 2(1 + ηsL)

(
1− 2ηsL

1 + κ

)m

.

Then using (7.7) to upper bound λs, we have

λs ≤ 2κ/θκ
2− κ/θκ

+ 2(1 + κ/θκ)

(
1− 2

(1 + κ)θκ

)m

.

Hence, by choosing θκ > 3κ/2 with θκ = O(κ) andm = O(κ2) so that λs < 1,

and using arguments similar to those in the proof of Corollary 7.2, one can

verify that the complexity is O
(
(n+ κ2) ln 1

ϵ

)
.

BB-SARAH with W-Avg:

Proof. From Theorem 7.2, the convergence rate is

λs =
(1−µηs)m

cµηs
+

[
(1−µηs)m −

(
1− 2ηsL

1+κ

)m] L+µ

c(L−µ)

+
ηsL(m−1)
c(2−ηsL)

+
2−2ηsL
2−ηsL

1 + κ

2cηsL
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≤
κθκ
(
1− 1

κθκ

)m
c

+
(
1− 1

κθκ

)m L+ µ

c(L− µ)

+
(m− 1)κ/θκ
c(2− κ/θκ)

+
2

2− κ/θκ

(1 + κ)θκ
2c

,

where c = m − 1
µηs

+ (1−µηs)m

µηs
≥ m − 1

µηs
≥ m − κθκ. With θκ = O(κ)

and m = O(κ2) so that c = O(κ2), we find that λs < 1. In addition, since

ηs < 1/L is still needed to guarantee convergence (cf. Theorem 7.2), one

must have θκ > κ.

7.8 More on Numerical Experiments

7.8.1 More Numerical Experiments of Section 7.2.4

This section presents additional numerical experiments to support that av-

eraging is not merely a “proof trick”. Specifically, experiments with SARAH

under different types of averaging on datasets a9a and diabetes are show-

cased in Figure 7.6. Similar to the performance of SARAH on dataset w7a,

W-Avg is better when the step size is chosen large, while a smaller step size

favors L-Avg.

7.8.2 Details of Datasets Used in Section 7.4

The dimension d, number of training data n, the weight used for regular-

ization, and other details of datasets used in Section 7.4 are listed in Table

7.1.

Table 7.1: Parameters of datasets used in numerical experiments

Dataset d n (train) density n (test) µ
a9a 122 3, 185 11.37% 29, 376 0.001
rcv1 47, 236 20, 242 0.157% 677, 399 0.00025

real-sim 20, 958 50, 617 0.24% 21, 692 0.00025
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(a) η = 0.9/L (b) η = 0.6/L
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Figure 7.6: Comparing SARAH with different types of averaging on
datasets a9a and diabetes. In all experiments, we set µ = 0.002 with
m = 5κ.
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CHAPTER 8

ENHANCING PARAMETER-FREE FRANK
WOLFE WITH AN EXTRA SUBPROBLEM

8.1 Preliminaries

Notation. In Chapter 8, bold lowercase (uppercase) letters denote vectors

(matrices); ∥x∥ stands for a norm of x, with its dual norm written as ∥x∥∗;
and ⟨x,y⟩ denotes the inner product of vectors x and y. We also define

x ∧ y := min{x, y}.
This section reviews FW and AFW in order to illustrate the proposed

algorithm in a principled manner. We first pinpoint the class of problems to

focus on.

Assumption 8.1. (Lipschitz Continuous Gradient.) The function f : X →
R has L-Lipchitz continuous gradients; that is, ∥∇f(x)−∇f(y)∥∗ ≤ L∥x −
y∥,∀x,y ∈ X .

Assumption 8.2. (Convex Objective Function.) The function f : X → R
is convex; that is, f(y)− f(x) ≥ ⟨∇f(x),y − x⟩,∀x,y ∈ X .

Assumption 8.3. (Constraint Set.) The constraint set X is convex and

compact with diameter D; that is, ∥x− y∥ ≤ D, ∀x,y ∈ X .

Assumptions 8.1 – 8.3 are standard for FW type algorithms and will be

taken to hold true throughout. A blackbox optimization paradigm is con-

sidered in this work, where the objective function and constraint set can be

accessed through oracles only. In particular, the first-order oracle (FO) and

the linear minimization oracle (LMO) are needed.

Definition 8.1. (FO.) The first-order oracle takes x ∈ X as an input and

returns its gradient ∇f(x).

Definition 8.2. (LMO.) The linear minimization oracle takes a vector g ∈
Rd as an input and returns a minimizer of minx∈X ⟨g,x⟩.
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Algorithm 8.1: FW [147]
1: Initialize: x0 ∈ X
2: for k = 0, 1, . . . ,K − 1 do
3: vk+1 = argminx∈X ⟨∇f(xk),x⟩
4: xk+1 = (1− δk)xk + δkvk+1

5: end for
6: Return: xK

Except for gradients, problem dependent parameters such as function value,

smoothness constant L, and constraint diameter D are not provided by FO

and LMO. Hence, algorithms relying only on FO and LMO are parameter-

free. Next, we recap FW and AFW with parameter-free step sizes to gain

more insights for the proposed algorithm.

FW recap. FW is summarized in Algorithm 8.1. A subproblem with a

linear loss, referred to also as an FW step, is solved per iteration via LMO.

The FW step can be explained as finding a minimizer over X for the following

supporting hyperplane of f(x),

f(xk) + ⟨∇f(xk),x− xk⟩. (8.1)

Note that (8.1) is also a lower bound for f(x) due to convexity. Upon ob-

taining vk+1 by minimizing (8.1), over X , xk+1 is updated as a convex com-

bination of vk+1 and xk to eliminate the projection. The parameter-free

step size is usually chosen as δk = 2
k+2

. As for convergence, FW guarantees

f(xk)− f(x∗) = O(LD2

k
).

AFW recap. As an FW variant, AFW in Algorithm 8.2 relies on Nesterov

momentum type update: that is, it uses an auxiliary variable yk to estimate

xk+1 and calculates the gradient ∇f(yk). If one writes gk+1 explicitly, vk+1

can be equivalently described as a minimizer over X of the hyperplane

k∑
τ=0

wτ
k

[
f(yτ ) + ⟨∇f(yτ ),x− yτ ⟩

]
, (8.2)

where wτ
k = δτ

∏k
j=τ+1(1 − δj) and

∑k
τ=0 w

τ
k ≈ 1 (the sum depends on the

choice of δ0). Note that f(yτ )+ ⟨∇f(yτ ),x−yτ ⟩ is a supporting hyperplane

of f(x) at yτ , hence (8.2) is a lower bound for f(x) constructed through

a weighted average of supporting hyperplanes at {yτ}. AFW converges at

O
(
LD2

k

)
on general problems. When the constraint set is an active ℓ2 norm
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Algorithm 8.2: AFW [163]
1: Initialize: x0 ∈ X , g0 = 0
2: for k = 0, 1, . . . ,K − 1 do
3: yk = (1− δk)xk + δkvk

4: gk+1 = (1− δk)gk + δk∇f(yk)
5: vk+1 = argminx∈X ⟨gk+1,x⟩
6: xk+1 = (1− δk)xk + δkvk+1

7: end for
8: Return: xK

Algorithm 8.3: ExtraFW
1: Initialize: x0, g0 = 0, and v0 = x0

2: for k = 0, 1, . . . ,K − 1 do
3: yk = (1− δk)xk + δkvk {prediction}
4: ĝk+1 = (1− δk)gk + δk∇f(yk)
5: v̂k+1 = argminv∈X ⟨ĝk+1,v⟩
6: xk+1 = (1− δk)xk + δkv̂k+1 {correction}
7: gk+1 = (1− δk)gk + δk∇f(xk+1)
8: vk+1 = argminv∈X ⟨gk+1,v⟩ {extra FW step}
9: end for
10: Return: xK

ball, AFW has a faster rate O
(
LD2

k
∧ TLD2 ln k

k2

)
, where T depends on D. Writ-

ing this rate compactly as O
(
TLD2 ln k

k2

)
, it is observed that AFW achieves ac-

celeration with the price of a worse dependence on other parameters hidden

in T . However, even for the k-dependence, AFW is O(ln k) times slower com-

pared with other momentum based algorithms such as NAG. This slowdown

is because that the lower bound (8.2) is constructed based on {yk} which are

estimated {xk+1}. We will show that relying on a lower bound constructed

using {xk+1} directly, it is possible to avoid this O(ln k) slowdown.

8.2 ExtraFW

This section introduces the main algorithm, ExtraFW, and establishes its

constraint dependent faster rates.

8.2.1 Algorithm Design

ExtraFW is summarized in Algorithm 8.3. Different from the vanilla FW

and AFW, two FW steps (lines 5 and 8 of Algorithm 8.3) are required per
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iteration. Compared with other algorithms relying on two gradient evalua-

tions, such as Mirror-Prox [166, 167], ExtraFW reduces the computational

burden of the projection. In addition, as an FW variant, ExtraFW can cap-

ture the properties such as sparsity or low rank promoted by the constraints

more effectively through the update than those projection based algorithms.

Detailed elaboration can be found in Section 8.3 and Section 8.7. To facilitate

comparison with FW and AFW, ExtraFW is explained through constructing

lower bounds of f(x) in a “prediction-correction” manner. The merits of the

PC update compared with AFW are: i) the elimination of maxx∈X f(x) in

analysis; and ii) it improves the convergence rate on certain class of problems

as we will see later.

Lower bound prediction. Similar to AFW, the auxiliary variable yk

in line 3 of Algorithm 8.3 can be viewed as an estimate of xk+1. The first

gradient is evaluated at yk and is incorporated into ĝk+1 which is an estimate

of the weighted average of {∇f(x)τ}k+1
τ=1. By expanding ĝk+1, one can verify

that v̂k+1 can be obtained equivalently through minimizing the following

weighted sum,

k−1∑
τ=0

wτ
k

[
f(xτ+1) + ⟨∇f(xτ+1),x− xτ+1⟩

]
+ δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
,

(8.3)

where wτ = δτ
∏k

j=τ+1(1 − δj) and
∑k−1

τ=0 wτ + δk ≈ 1. Note that each term

inside square brackets forms a supporting hyperplane of f(x), hence (8.3) is

an (approximated) lower bound of f(x) because of convexity. As a prediction

to f(xk+1)+ ⟨∇f(xk+1),x−xk+1⟩, the last bracket in (8.3) will be corrected

once xk+1 is obtained.

Lower bound correction. The gradient ∇f(xk+1) is used to obtain a

weighted averaged gradients gk+1. By unrolling gk+1, one can find that vk+1

is a minimizer of the following (approximated) lower bound of f(x)

k−1∑
τ=0

wτ
k

[
f(xτ+1) +

〈
∇f(xτ+1),x− xτ+1

〉]
+ δk

[
f(xk+1) +

〈
∇f(xk+1),x− xk+1

〉]
. (8.4)

Comparing (8.3) and (8.4), we deduce that the terms in the last bracket of
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(8.3) are corrected to the true supporting hyperplane of f(x) at xk+1. In

sum, the FW steps in ExtraFW rely on lower bounds of f(x) constructed in

a weighted average manner similar to AFW. However, the key difference is

that ExtraFW leverages the supporting hyperplanes at true variables {xk}
rather than the auxiliary ones {yk} in AFW through a “correction” effected

by (8.4). In the following sections, we will show that the PC update in

ExtraFW performs no worse than FW or AFW on general problems, while

harnessing its own analytical merits on certain constraint sets.

8.2.2 Convergence of ExtraFW

We investigate the convergence of ExtraFW by considering the general case

first. The analysis relies on the notion of ES introduced in [125]. An ES

“estimates” f using a sequence of surrogate functions {Φk(x)} that are an-

alytically tractable (e.g., being quadratic or linear). ES is formalized in the

following definition.

Definition 8.3. A tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
is called an estimate se-

quence of function f(x) if limk→∞ λk = 0 and for any x ∈ X we have

Φk(x) ≤ (1− λk)f(x) + λkΦ0(x).

The construction of ES varies for different algorithms (see e.g., [236, 125,

240, 10]). However, the reason to rely on the ES based analysis is similar, as

summarized in the following lemma.

Lemma 8.1. For
(
{Φk(x)}∞k=0, {λk}∞k=0

)
satisfying the definition of ES, if

f(xk) ≤ minx∈X Φk(x) + ξk,∀k, it is true that

f(xk)− f(x∗) ≤ λk

(
Φ0(x

∗)− f(x∗)
)
+ ξk,∀ k.

As shown in Lemma 8.1, λk and ξk jointly characterize the convergence

rate of f(xk). Consider λk = O( 1
k
) and ξk = O( 1

k
) for an example. Keeping

Lemma 8.1 in mind, we construct two sequences of linear surrogate functions

for analyzing ExtraFW, which highlight the differences of our analysis with
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existing ES based approaches

Φ0(x) = Φ̂0(x) ≡ f(x0), (8.5a)

Φ̂k+1(x) = (1− δk)Φk(x) + δk
[
f(yk) + ⟨∇f(yk),x− yk⟩

]
, ∀k ≥ 0, (8.5b)

Φk+1(x) = (1− δk)Φk(x) + ⟨∇f(xk+1),x− xk+1⟩
]
, ∀k ≥ 0. (8.5c)

Clearly, both Φk(x) and Φ̂k(x) are linear in x, in contrast to the quadratic

surrogate functions adopted for analyzing NAG [125]. Such linear surrogate

functions are constructed specifically for FW type algorithms taking advan-

tage of the compact and convex constraint set. Next we show that (8.5) and

proper {λk} form two different ES of f .

Lemma 8.2. If we choose λ0 = 1, δk ∈ (0, 1), and λk+1 = (1−δk)λk ∀k ≥ 0,

both
(
{Φk(x)}∞k=0,{λk}∞k=0

)
and

(
{Φ̂k(x)}∞k=0, {λk}∞k=0

)
satisfy the definition

of ES.

The key reason behind the construction of surrogate functions in (8.5) is

that they are closedly linked with the lower bounds (8.3) and (8.4) used in

the FW steps, as stated in the next lemma.

Lemma 8.3. Let g0 = 0, then it is true that vk = argminx∈X Φk(x) and

v̂k = argminx∈X Φ̂k(x).

After relating the surrogate functions in (8.5) with ExtraFW, exploiting

the analytical merits of the surrogate functions Φk(x) and Φ̂k(x), including

being linear, next we show that f(xk) ≤ minx∈X Φk(x) + ξk, ∀k, which is the

premise of Lemma 8.1.

Lemma 8.4. Let ξ0 = 0 and other parameters chosen the same as previous

lemmas. Denote Φ∗
k := Φk(vk) as the minimum value of Φk(x) over X (cf.

Lemma 8.3), then ExtraFW guarantees that for any k ≥ 0

f(xk) ≤ Φ∗
k + ξk, with ξk+1 = (1− δk)ξk +

3LD2

2
δ2k.

Based on Lemma 8.4, the value of f(xk) and Φ∗
k can be used to derive the

stopping criterion if one does not want to preset the iteration number K.

Further discussions are provided in Section 8.4.6. Now we are ready to apply

Lemma 8.1 to establish the convergence of ExtraFW.
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Theorem 8.1. Suppose that Assumptions 8.1, 8.2, and 8.3 are satisfied.

Choosing δk =
2

k+3
, and g0 = 0, ExtraFW in Algorithm 8.3 guarantees

f(xk)− f(x∗) = O
(
LD2

k

)
,∀k.

This convergence rate of ExtraFW has the same order as AFW and FW.

In addition, Theorem 8.1 translates into O(LD2

ϵ
) queries of LMO to ensure

f(xk)− f(x∗) ≤ ϵ, which matches to the lower bound [155, 148].

The obstacle for faster rates. As shown in the detailed proof, one needs

to guarantee that either ∥vk − v̂k+1∥2 or ∥vk+1 − v̂k+1∥2 is small enough to

obtain a faster rate than Theorem 8.1. This is difficult in general because

there could be multiple vk and v̂k solving the FW steps. A simple example

is to consider the ith entry [gk]i = 0. The ith entry [vk]i can then be chosen

arbitrarily as long as vk ∈ X . The non-uniqueness of vk prevents one from

ensuring a small upper bound of ∥vk − v̂k+1∥2, ∀ vk. In spite of this, we

will show that together with the structure on X , ExtraFW can attain faster

rates.

8.2.3 Acceleration of ExtraFW

In this section, we provide constraint-dependent accelerated rates of Ex-

traFW when X is some norm ball. Even for projection based algorithms,

most of faster rates are obtained with step sizes depending on L [165, 166].

Thus, faster rates for parameter-free algorithms are challenging to establish.

An extra assumption is needed in this section.

Assumption 8.4. The constraint is active, i.e., ∥∇f(x∗)∥2 ≥ G > 0.

It is natural to rely on the position of the optimal solution in FW type

algorithms for analysis, and one can see this assumption also in [160, 242, 163,

243]. For a number of machine learning tasks, Assumption 8.4 is rather mild.

Relying on Lagrangian duality, it can be seen that problem (1.4) with a norm

ball constraint is equivalent to the regularized formulation minx f(x)+γg(x),

where γ ≥ 0 is the Lagrange multiplier, and g(x) denotes some norm. In

view of this, Assumption 8.4 simply implies that γ > 0 in the equivalent

regularized formulation, that is, the norm ball constraint plays the role of a

regularizer. Given the prevalence of the regularized formulation in machine
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learning, it is worth investigating its equivalent constrained form (1.4) under

Assumption 8.4.

Technically, the need behind Assumption 8.4 can be exemplified through a

one-dimensional problem. Consider minimizing f(x) = x2 over X = {x|x ∈
[−1, 1]}. We clearly have x∗ = 0 for which the constraint is inactive at the

optimal solution. Recall a faster rate of ExtraFW requires ∥v̂k+1 − vk+1∥2
to be small. When xk is close to x∗ = 0, it can happen that ĝk+1 > 0 and

gk+1 < 0, leading to v̂k+1 = −1 and vk+1 = 1. The faster rate is prevented

by pushing vk+1 and v̂k+1 further apart from each other.

Next, we consider different instances of norm ball constraints as examples

to the acceleration of ExtraFW. For simplicity of exposition, the intuition

and technical details are discussed using an ℓ2 norm ball constraint in the

main experiment. Detailed analysis for ℓ1 and n-support norm ball [244]

constraints are provided in Section 8.6.1 and 8.6.2.

ℓ2 norm ball constraint. Consider X := {x|∥x∥2 ≤ D
2
}. In this case,

vk+1 and v̂k+1 admit closed-form solutions, taking vk+1 as an example,

vk+1 = argmin
x∈X

⟨gk+1,x⟩ = −
D

2∥gk+1∥2
gk+1. (8.6)

We assume that when using gk+1 as the input to the LMO, the returned

vector is given by (8.6). This is reasonable since it is what we usually imple-

mented in practice. Though it rarely happens, one can choose vk+1 = v̂k+1

to proceed if gk+1 = 0. Similarly, we can simply set v̂k+1 = vk if ĝk+1 = 0.

The uniqueness of vk+1 is ensured by its closed-form solution, wiping out the

obstacle for a faster rate.

Theorem 8.2. Suppose that Assumptions 8.1, 8.2, 8.3, and 8.4 are satisfied,

and X is an ℓ2 norm ball. Choosing δk = 2
k+3

and g0 = 0, ExtraFW in

Algorithm 8.3 guarantees

f(xk)− f(x∗) = O
(
LD2

k
∧ LD2T

k2

)
, ∀k,

where T is a constant depending only on L, G, and D.

Theorem 8.2 admits a couple of interpretations. By writing the rate com-

pactly, ExtraFW achieves accelerated rate O
(
TLD2

k2

)
,∀k with a worse depen-

dence on D compared to the vanilla FW. Or alternatively, the “asymptotic”
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performance at k ≥ T is strictly improved over the vanilla FW. It is worth

mentioning that the choices of δk and g0 are not changed compared to The-

orem 8.1 so that the parameter-free implementation is the same regardless

whether accelerated. In other words, prior knowledge on whether Assump-

tion 8.4 holds is not needed in practice. Compared with CGS, ExtraFW

sacrifices the D dependence in the convergence rate to trade for i) the non-

necessity of the knowledge of L and D and ii) ensuring two FW subprob-

lems per iteration (whereas at most O(k) subproblems are needed in CGS).

When comparing with AFW [163], the convergence rate of ExtraFW is im-

proved by a factor of O(ln k), and the analysis does not rely on the constant

M := maxx∈X f(x).

ℓ1 norm ball constraint. For the sparsity-promoting constraint X :=

{x|∥x∥1 ≤ R}, the FW steps can be solved in closed form too. Taking vk+1

as an example, we have

vk+1 = R · [0, . . . , 0,−sgn[gk+1]i, 0, . . . , 0]
⊤ with i = argmax

j
|[gk+1]j|.

(8.7)

We show in Theorem 8.3 (see Section 8.6.1) that when Assumption 8.4 holds

and the set argmaxj
∣∣[∇f(x∗)]j

∣∣ has cardinality 1, a faster rate O(T1LD2

k2
) can

be obtained with the constant T1 depending on L, G, and D. The additional

assumption here is known as strict complementarity and has been adopted

also in, e.g.,[245, 246].

n-support norm ball constraint. The n-support norm ball is a tighter

relaxation of a sparsity prompting ℓ0 norm ball combined with an ℓ2 norm

penalty compared with the ElasticNet [247]. It is defined as X := conv{x|∥x∥0
≤ n, ∥x∥2 ≤ R}, where conv{·} denotes the convex hull [244]. The closed-

form solution of vk+1 is given by [248]

vk+1 = −
R

∥topn(gk+1)∥2
topn(gk+1), (8.8)

where topn(g) denotes the truncated version of g with its top n (in magni-

tude) entries preserved. A faster rate O(T2LD2

k2
) is guaranteed by ExtraFW

under Assumption 8.4 and a condition similar to strict complementarity (see

Theorem 8.4 in the Section 8.6.2). Again, the constant T2 here depends on

L, G, and D.
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Other constraints. Note that the faster rates for ExtraFW are not

limited to the exemplified constraint sets. In principle, if i) certain structure

such as sparsity is promoted by the constraint set so that x∗ is likely to lie on

the boundary of X , and ii) one can ensure the uniqueness of vk through either

a closed-form solution or a specific implementation manner, the acceleration

of ExtraFW is achievable. Discussions for faster rates on a simplex X can

be found in Section 8.6.1. In addition, one can easily extend our results

to the matrix case where the constraint set is the Frobenius or the nuclear

norm ball since they are ℓ2 and ℓ1 norms on the singular values of matrices,

respectively.

8.3 Numerical Experiments

This section deals with numerical experiments of ExtraFW to showcase its

effectiveness on different machine learning problems. Due to the space limi-

tation, details of the datasets and implementation are deferred to Section 8.7.

For comparison, the benchmarked algorithms are chosen as: i) GD with stan-

dard step size 1
L
; ii) NAG with step sizes in [144]; iii) FW with parameter-free

step size 2
k+2

[148]; and iv) AFW with step size 2
k+3

[163].

8.3.1 Binary Classification

We first investigate the performance of ExtraFW on binary classification

using logistic regression. The constraints considered include: i) ℓ2 norm ball

for generalization merits and ii) ℓ1 and n-support norm ball for promoting a

sparse solution. The objective function is

f(x) =
1

N

N∑
i=1

ln
(
1 + exp(−bi⟨ai,x⟩)

)
, (8.9)

where (ai, bi) is the (feature, label) pair of datum i, and N is the number of

data. Datasets mnist and those from LIBSVM1 are used in the numerical

experiments. Figures reporting experiment accuracy and additional experi-

ments are postponed into Section 8.7.

1http://yann.lecun.com/exdb/mnist/, and https://www.csie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/binary.html.
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Figure 8.1: Performance of ExtraFW for binary classification with an ℓ2
norm ball constraint on datasets: (a) mnist, (b) w7a, (c) realsim, and (d)
mushroom.

ℓ2 norm ball constraint. We start with X = {x|∥x∥2 ≤ R}. The opti-

mality errors are plotted in Fig. 8.1. On all tested datasets, ExtraFW out-

performs AFW, NAG, FW, and GD, demonstrating the O( 1
k2
) convergence

rate established in Theorem 8.2. In addition, the simulation also suggests

that T is generally small for logistic loss. On dataset w7a and mushroom,

ExtraFW is significantly faster than AFW. All these observations jointly

confirm the usefulness of the extra gradient and the PC update.

ℓ1 norm ball constraint. Let X = {x|∥x∥1 ≤ R} be the constraint set

to promote sparsity on the solution. Note that FW type updates directly

guarantee that xk has at most k non-zero entries when initialized at x0 = 0;

see detailed discussions in Section 8.7.2. In the simulation, R is tuned to

obtain a solution that is almost as sparse as the dataset itself. The numerical

results on datasets mnist and mushroom including both optimality error and

the sparsity level of the solution can be found in Fig. 8.2. On dataset mnist,

ExtraFW slightly outperforms AFW but is not as fast as NAG. However,

ExtraFW consistently finds solutions sparser than NAG. While on dataset

mushroom, it can be seen that both AFW and ExtraFW outperform NAG,
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Figure 8.2: Performance of ExtraFW for binary classification with an ℓ1
norm ball constraint: (a1) optimality error on mnist, (a2) solution sparsity
on mnist, (b1) optimality error on mushroom, and, (b2) solution sparsity on
mushroom.

with ExtraFW slightly faster than AFW. ExtraFW finds sparser solutions

than NAG.

n-support norm ball constraint. Effective projection onto such a con-

straint is unknown yet, hence GD and NAG are not included in the experi-

ment. The performance of ExtraFW can be found in Fig. 8.3. On dataset

mnist, both AFW and ExtraFW converge much faster than FW with Ex-

traFW slightly faster than AFW. However, FW trades the solution accuracy

with its sparsity. On dataset mushroom, ExtraFW converges much faster

than AFW and FW, while finding the sparsest solution.

8.3.2 Matrix Completion

We then consider matrix completion problems that are ubiquitous in rec-

ommender systems. Consider a matrix A ∈ Rm×n with partially observed

entries, that is, entries Aij for (i, j) ∈ K are known, where K ⊂ {1, . . . ,m}×
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Figure 8.3: Performance of ExtraFW for binary classification with an
n-support norm ball constraint: (a1) optimality error on mnist, (a2)
solution sparsity on mnist, (b1) optimality error on mushroom, and (b2)
solution sparsity on mushroom.

{1, . . . , n}. Note that the observed entries can also be contaminated by noise.

The task is to predict the unobserved entries ofA. Although this problem can

be approached in several ways, within the scope of recommender systems, a

commonly adopted empirical observation is thatA is low rank [249, 250, 251].

The objective boils down to

min
X

1

2

∑
(i,j)∈K

(Xij − Aij)
2 s.t. ∥X∥nuc ≤ R, (8.10)

where ∥ · ∥nuc denotes the nuclear norm. Problem (8.10) is difficult to be

solved via GD or NAG because projection onto a nuclear norm ball requires

to perform SVD, which has complexity O
(
mn(m∧n)

)
. On the contrary, FW

and its variants are more suitable for (8.10) given the facts: i) Assumptions

8.1 – 8.3 are satisfied under nuclear norm [142]; ii) FW step can be solved

easily with complexity at the same order as the number of nonzero entries;

and iii) the update promotes low-rank solution directly [142]. More on ii)
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Figure 8.4: Performance of ExtraFW for matrix completion: (a) optimality
vs k, (b) solution rank vs k, (c) optimality at k = 500 vs R, and, (d)
solution rank at k = 500 vs R.

and iii) are discussed in Section 8.7.3.

We test ExtraFW on a widely used dataset, MovieLens100K 2. The exper-

iments follow the same steps in [142, Freund et al., 2017]. The numerical

performance of ExtraFW, AFW, and FW can be found in Fig. 8.4. In

Figures 8.4(a) and 8.4(b), we plot the optimality error and rank versus k

choosing R = 2.5. It is observed that ExtraFW exhibits the best perfor-

mance in terms of both optimality error and solution rank. In particular,

ExtraFW roughly achieves 2.5x performance improvement compared with

FW in terms of optimality error. We further compare the convergence of

ExtraFW to AFW and FW at iteration k = 500 under different choices of

R in Figures 8.4(c) and 8.4(d). It can be seen that ExtraFW still finds solu-

tions with the lowest optimality error and rank. Moreover, the performance

gap between ExtraFW and AFW increases with R, suggesting the inclined

tendency of preferring ExtraFW over AFW and FW as R grows.

2https://grouplens.org/datasets/movielens/100k/

161



8.4 Proofs in Section 8.2.2

8.4.1 Proof of Lemma 8.1

Proof. If f(xk) ≤ minx∈X Φk(x) + ξk holds, then we have

f(xk) ≤ min
x∈X

Φk(x) + ξk ≤ Φk(x
∗) + ξk ≤ (1− λk)f(x

∗) + λkΦ0(x
∗) + ξk,

where the last inequality is because Definition 8.3. Subtracting f(x∗) on

both sides, we arrive at

f(xk)− f(x∗) ≤ λk

(
Φ0(x

∗)− f(x∗)
)
+ ξk,

which completes the proof.

8.4.2 Proof of Lemma 8.2

Proof. We prove
(
{Φk(x)}∞k=0,{λk}∞k=0

)
is an ES of f by induction. Because

λ0 = 1, it holds that Φ0(x) = (1−λ0)f(x)+λ0Φ0(x) = Φ0(x). Suppose that

Φk(x) ≤ (1− λk)f(x) + λkΦ0(x) is true for some k. We have

Φk+1(x) = (1− δk)Φk(x) + δk

[
f(xk+1) +

〈
∇f(xk+1),x− xk+1

〉]
(a)

≤ (1− δk)Φk(x) + δkf(x)

≤ (1− δk)
[
(1− λk)f(x) + λkΦ0(x)

]
+ δkf(x)

= (1− λk+1)f(x) + λk+1Φ0(x),

where (a) is because f is convex; and the last equation is by definition of

λk+1. Together with the fact that limk→∞ λk = 0, one can see that the tuple(
{Φk(x)}∞k=0, {λk}∞k=0

)
is an ES of f .

Next we show
(
{Φ̂k(x)}∞k=0, {λk}∞k=0

)
is also an ES. Clearly Φ̂0(x) = (1 −

λ0)f(x) + λ0Φ0(x) = Φ̂0(x). Next for k ≥ 0, using similar arguments, we

have

Φ̂k+1(x) = (1− δk)Φk(x) + δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
≤ (1− δk)Φk(x) + δkf(x)
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≤ (1− δk)
[
(1− λk)f(x) + λkΦ0(x)

]
+ δkf(x)

= (1− λk+1)f(x) + λk+1Φ0(x)

= (1− λk+1)f(x) + λk+1Φ̂0(x).

The proof is thus completed.

8.4.3 Proof of Lemma 8.3

Proof. For convenience, denote Bk(x) := f(xk) + ⟨∇f(xk),x− xk⟩. We can

unroll Φk+1(x) as

Φk+1(x) = (1− δk)Φk(x) + δkBk+1(x) (8.11)

= (1− δk)(1− δk−1)Φk−1(x) + (1− δk)δk−1Bk(x) + δkBk+1(x)

= Φ0(x)
k∏

τ=0

(1− δτ ) +
k∑

τ=0

δτBτ+1(x)
k∏

j=τ+1

(1− δj)

= f(x0)
k∏

τ=0

(1− δτ ) +
k∑

τ=0

δτBτ+1(x)
k∏

j=τ+1

(1− δj).

Hence, the minimizer of Φk+1(x) can be rewritten as

argmin
x∈X

Φk+1(x)

= argmin
x∈X

f(x0)
k∏

τ=0

(1− δτ ) +
k∑

τ=0

δτBτ+1(x)
k∏

j=τ+1

(1− δj) (8.12)

= argmin
x∈X

k∑
τ=0

δτ
[
f(xτ+1) + ⟨∇f(xτ+1),x− xτ+1⟩

]
×

k∏
j=τ+1

(1− δj)

= argmin
x∈X

k∑
τ=0

δτ ⟨∇f(xτ+1),x⟩
k∏

j=τ+1

(1− δj)

= argmin
x∈X

k∑
τ=0

〈
δτ∇f(xτ+1)

k∏
j=τ+1

(1− δj),x
〉

= argmin
x∈X

⟨gk+1,x⟩,
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where the last equation is because

gk+1 = (1− δk)gk + δk∇f(xk+1)

= (1− δk)(1− δk−1)gk−1 + (1− δk)δk−1∇f(xk) + δk∇f(xk+1)

= g0

k∏
τ=0

(1− δτ ) +
k∑

τ=0

δτ∇f(xτ+1)
k∏

j=τ+1

(1− δj)

=
k∑

τ=0

δτ∇f(xτ+1)
k∏

j=τ+1

(1− δj).

From (8.12) it is not hard to see vk+1 minimizes Φk+1(x).

If we write ĝk+1 explicitly, we can obtain

Φ̂k+1(x) = (1− δk)Φk(x) + δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
= f(x0)

k∏
τ=0

(1− δτ ) +
k−1∑
τ=0

δτBτ+1(x)
k∏

j=τ+1

(1− δj)

+ δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
.

Hence using similar arguments as above we have

argmin
x∈X

Φ̂k+1(x) = argmin
x∈X

〈
δk∇f(yk) +

k−1∑
τ=0

δτ∇f(xτ+1)
k∏

j=τ+1

(1− δj),x
〉

= argmin
x∈X

⟨ĝk+1,x⟩ = v̂k+1,

which implies that v̂k+1 is a minimizer of Φ̂k+1(x) over X . The lemma is

thus proven.

8.4.4 Proof of Lemma 8.4

Proof. We prove this lemma by induction. Since Φ0(x) ≡ f(x0) and ξ0 = 0,

it is clear that f(x0) ≤ Φ∗
0 + ξ0.

Now suppose that f(xk) ≤ Φ∗
k + ξk holds for some k > 0, we will show
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f(xk+1) ≤ Φ∗
k+1 + ξk+1. To start with, we have from Assumption 7.1 that

f(xk+1) ≤ f(yk) +
〈
∇f(yk),xk+1 − yk

〉
+

L

2
∥xk+1 − yk∥2 (8.13)

(a)
= f(yk) + (1− δk)

〈
∇f(yk),xk − yk

〉
+ δk

〈
∇f(yk), v̂k+1 − yk

〉
+

L

2
∥xk+1 − yk∥2

(b)
= f(yk) + (1− δk)

〈
∇f(yk),xk − yk

〉
+ δk

〈
∇f(yk), v̂k+1 − yk

〉
+

Lδ2k
2
∥v̂k+1 − vk∥2

(c)

≤ (1− δk)f(xk) + δkf(yk) + δk
〈
∇f(yk), v̂k+1 − yk

〉
+

Lδ2k
2
∥v̂k+1 − vk∥2,

where (a) is because xk+1 = (1− δk)xk + δkv̂k+1; (b) is by the choice of xk+1

and yk; and (c) is from convexity, that is, ⟨∇f(yk),xk−yk⟩ ≤ f(xk)−f(yk).

For convenience, we denote Φ̂∗
k := Φ̂k(v̂k) as the minimum value of Φ̂k(x) over

X (the equation here is the result of Lemma 8.3). Then we have

Φ̂∗
k+1 = Φ̂k+1(v̂k+1)

(d)
= (1− δk)Φk(v̂k+1) + δk

[
f(yk) +

〈
∇f(yk), v̂k+1 − yk

〉]
(e)

≥ (1− δk)Φ
∗
k + δk

[
f(yk) +

〈
∇f(yk), v̂k+1 − yk

〉]
(f)

≥ (1− δk)f(xk) + δk

[
f(yk) +

〈
∇f(yk), v̂k+1 − yk

〉]
− (1− δk)ξk

(g)

≥ f(xk+1)−
Lδ2k
2
∥v̂k+1 − vk∥2 − (1− δk)ξk

≥ f(xk+1)−
LD2δ2k

2
− (1− δk)ξk,

where (d) is by the definition of Φ̂k+1(x); (e) uses Φk(v̂k+1) ≥ Φ∗
k; (f) is by

the induction hypothesis f(xk) ≤ Φ∗
k + ξk; (g) is by plugging (8.13) in; and

the last inequality is because of Assumption 7.3. Rearrange the terms, we

have

f(xk+1) ≤ Φ̂∗
k+1 +

LD2δ2k
2

+ (1− δk)ξk (8.14)

= Φ∗
k+1 + (Φ̂∗

k+1 − Φ∗
k+1) +

LD2δ2k
2

+ (1− δk)ξk.
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Then, we have from Lemma 8.3 that

Φ̂∗
k+1 − Φ∗

k+1 = sΦ̂k+1(v̂k+1)− Φk+1(vk+1) (8.15)

= Φ̂k+1(v̂k+1)− Φ̂k+1(vk+1) + Φ̂k+1(vk+1)− Φk+1(vk+1)

(h)

≤ Φ̂k+1(vk+1)− Φk+1(vk+1)

(i)
= δk

[
f(yk) +

〈
∇f(yk),vk+1 − yk

〉]
− δk

[
f(xk+1) +

〈
∇f(xk+1),vk+1 − xk+1

〉]
(j)

≤ δk
〈
∇f(yk)−∇f(xk+1),vk+1 − xk+1

〉
≤ δk

∥∥∇f(yk)−∇f(xk+1)
∥∥
∗

∥∥vk+1 − xk+1

∥∥
(k)

≤ δkL
∥∥yk − xk+1

∥∥∥∥vk+1 − xk+1

∥∥
(l)

≤ δ2kL
∥∥vk − v̂k+1

∥∥∥∥vk+1 − xk+1

∥∥ ≤ δ2kLD
2,

where (h) is because Φ̂k+1(v̂k+1) ≤ Φ̂k+1(x),∀x ∈ X according to Lemma

8.3; (i) follows from (8.5); (j) uses f(yk) − f(xk+1) ≤ ⟨∇f(yk),yk − xk+1⟩;
(k) is because of Assumption 7.1; and (l) uses the choice of yk and xk+1.

Plugging (8.15) back into (8.14), we have

f(xk+1) ≤ Φ∗
k+1 +

3LD2δ2k
2

+ (1− δk)ξk,

which completes the proof.

8.4.5 Proof of Theorem 8.1

Proof. Given
(
{Φk(x)}∞k=0, {λk}∞k=0

)
is an ES as shown in Lemma 8.2, to-

gether with the fact f(xk) ≤ minx∈X Φk(x) + ξk,∀k as shown in Lemma 8.4,

one can directly apply Lemma 8.1 to have

f(xk)− f(x∗) ≤ λk

(
f(x0)− f(x∗)

)
+ ξk =

2
(
f(x0)− f(x∗)

)
(k + 1)(k + 2)

+ ξk, (8.16)
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where ξk is defined in Lemma 8.4. Clearly, ξk ≥ 0,∀k, and one can find an

upper bound of it as

ξk = (1− δk−1)ξk−1 +
3δ2k−1

2
LD2

=
3LD2

2

k−1∑
τ=0

δ2τ

[ k−1∏
j=τ+1

(1− δj)

]

=
3LD2

2

k−1∑
τ=0

4

(τ + 3)2
(τ + 2)(τ + 3)

(k + 1)(k + 2)
≤ 6LD2

k + 2
.

Plugging ξk into (8.16) completes the proof.

8.4.6 Stopping Criterion

In this section, we show that the value of f(xk) − Φ∗
k can be used to derive

a stopping criterion (see (8.17)). How to obtain the value of Φ∗
k iteratively

(via (8.18) and (8.19)) is also discussed.

First, as a consequence of Lemma 8.4, we have f(xk)−Φ∗
k ≤ ξk = O

(
LD2

k

)
.

This means that the value of f(xk)− Φ∗
k converges to 0 at the same rate of

f(xk)− f(x∗).

Next we show that how to estimate f(xk) − f(x∗) using f(xk) − Φ∗
k. We

have that

f(xk)− Φ∗
k

(a)

≥ f(xk)− Φk(x
∗)

(b)

≥ f(xk)− (1− λk)f(x
∗)− λkΦ0(x

∗)

(c)
= (1− λk)

[
f(xk)− f(x∗)

]
+ λk

[
f(xk)− f(x0)

]
,

where (a) is because of Φ∗
k = minx∈X Φk(x), (b) is by the definition of ES,

and (c) uses Φ0(x) ≡ f(x0). The inequality above implies that

f(xk)− f(x∗) ≤ 1

1− λk

(
f(xk)− Φ∗

k − λk

[
f(xk)− f(x0)

])
. (8.17)

Notice that the RHS of (8.17) goes to 0 as k increases, hence (8.17) can be

used as the stopping criterion.
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Finally we discuss how to update Φ∗
k efficiently. From (8.11), we have

Φk+1(x) = f(x0)
k∏

τ=0

(1− δτ ) +
k∑

τ=0

δτ

[
f(xτ+1) + ⟨∇f(xτ+1),x− xτ+1⟩

]

×
k∏

j=τ+1

(1− δj)

= f(x0)
k∏

τ=0

(1− δτ ) +
k∑

τ=0

δτ

[
f(xτ+1) + ⟨∇f(xτ+1),x− xτ+1⟩

]

×
k∏

j=τ+1

(1− δj)

= f(x0)
k∏

τ=0

(1− δτ ) +
k∑

τ=0

δτ

[
f(xτ+1)− ⟨∇f(xτ+1),xτ+1⟩

]

×
k∏

j=τ+1

(1− δj) + ⟨gk+1,x⟩,

where the last equation uses the definition of gk+1. Hence, we can obtain

Φ∗
k+1 as

Φ∗
k+1 = Φk+1(vk+1) = Vk+1 + ⟨gk+1,vk+1⟩, (8.18)

and Vk+1 can be updated as

Vk+1 = (1− δk)Vk + δk

[
f(xk+1)− ⟨∇f(xk+1),xk+1⟩

]
,

with V0 = f(x0). (8.19)

8.5 Proof of Theorem 8.2

Because we are dealing with an ℓ2 norm ball constraint in this section, we

use R := D
2
for convenience. And we will extend the domain of f(x) slightly

to X̃ := conv{x − 1
L
∇f(x), ∀x ∈ X}, i.e., f : X̃ → R. This is a very mild

assumption since most of practically used loss functions have domain Rd.

Lemma 8.5. [125, Theorem 2.1.5] If Assumptions 7.1 and 7.2 hold with the
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extended domain X̃ , then it is true that for any x,y ∈ X

1

2L
∥∇f(x)−∇f(y)∥22 ≤ f(y)− f(x)− ⟨∇f(x),y − x⟩.

Lemma 8.6. Choose δk =
2

k+3
, then we have

∥∇f(xk)−∇f(x∗)∥2 ≤

√
4L
(
f(x0)− f(x∗)

)
(k + 1)(k + 2)

+
12L2D2

k + 2
≤ C1√

k + 2
,

where C1 ≤
√
12L2D2 + 4L

(
f(x0)− f(x∗)

)
.

Proof. Using Lemma 8.5, we have

1

2L
∥∇f(xk)−∇f(x∗)∥22 ≤ f(xk)− f(x∗)− ⟨∇f(x∗),xk − x∗⟩

(a)

≤ f(xk)− f(x∗)

(b)

≤
2
(
f(x0)− f(x∗)

)
(k + 1)(k + 2)

+
6LD2

k + 2
,

where (a) is by the optimality condition, that is, ⟨∇f(x∗),x− x∗⟩ ≥ 0,∀x ∈
X ; and (b) is by Theorem 8.1. This further implies

∥∇f(xk)−∇f(x∗)∥2 ≤

√
4L
(
f(x0)− f(x∗)

)
(k + 1)(k + 2)

+
12L2D2

k + 2
.

The proof is thus completed.

Lemma 8.7. If both x∗
1 and x∗

2 minimize f(x) over X , then we have ∇f(x∗
1) =

∇f(x∗
2).

Proof. From Lemma 8.5, we have

1

2L
∥∇f(x∗

2)−∇f(x∗
1)∥22 ≤ f(x∗

2)− f(x∗
1)− ⟨∇f(x∗

1),x
∗
2 − x∗

1⟩
(a)

≤ f(x∗
2)− f(x∗

1) = 0,

where (a) is by the optimality condition, that is, ⟨∇f(x∗
1),x− x∗

1⟩ ≥ 0,∀x ∈
X . Hence we can only have ∇f(x∗

2) = ∇f(x∗
1). This means that the value

of ∇f(x∗) is unique regardless of the uniqueness of x∗.
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Lemma 8.8. Let ∥∇f(x∗)∥2 = G∗, (and G∗ is unique bacause of Lemma

8.7) where G∗ ≥ G. Choose δk =
2

k+3
, it is guaranteed to have

∥gk+1 −∇f(x∗)∥2 ≤
4C1

3(
√
k + 3− 1)

+
2G∗

(k + 2)(k + 3)
.

In addition, there exists a constant C2 ≤ 4
3
C1 +

2
3(
√
3+1)

G∗ such that

∥gk+1 −∇f(x∗)∥2 ≤
C2√

k + 3− 1
.

Proof. First we have

gk+1 = (1− δk)gk + δk∇f(xk+1) =
k∑

τ=0

δτ∇f(xτ+1)

[ k∏
j=τ+1

(1− δj)

]
(8.20)

=
k∑

τ=0

2(τ + 2)

(k + 2)(k + 3)
∇f(xτ+1).

Noticing that 2
∑k

τ=0(τ + 2) = (k + 1)(k + 4) = (k + 2)(k + 3)− 2, we have

∥gk+1 −∇f(x∗)∥2

=

∥∥∥∥ k∑
τ=0

2(τ + 2)

(k + 2)(k + 3)

[
∇f(xτ+1)−∇f(x∗)

]
− 2

(k + 2)(k + 3)
∇f(x∗)

∥∥∥∥
2

≤
k∑

τ=0

2(τ + 2)

(k + 2)(k + 3)

∥∥∇f(xτ+1)−∇f(x∗)
∥∥
2
+

2

(k + 2)(k + 3)

∥∥∇f(x∗)
∥∥
2

(a)

≤
k∑

τ=0

2(τ + 2)

(k + 2)(k + 3)

C1√
τ + 3

+
2G∗

(k + 2)(k + 3)

≤ 2C1

(k + 2)(k + 3)

k∑
τ=0

√
τ + 2 +

2G∗

(k + 2)(k + 3)

≤ 4C1

3(k + 2)(k + 3)
(k + 3)3/2 +

2G∗

(k + 2)(k + 3)

=
4C1

3(
√
k + 3 + 1)(

√
k + 3− 1)

√
k + 3 +

2G∗

(k + 2)(k + 3)

≤ 4C1

3(
√
k + 3− 1)

+
2G∗

(k + 2)(k + 3)
,

where (a) follows from Lemma 8.6. This completes the proof for the first
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part of this lemma. Next, to find C2, we have

∥gk+1 −∇f(x∗)∥2 ≤
4C1

3(
√
k + 3− 1)

+
2G∗

(k + 2)(k + 3)

=
4C1

3(
√
k + 3− 1)

+
2G∗

(k + 3)(
√
k + 3 + 1)(

√
k + 3− 1)

(b)

≤ 4C1

3(
√
k + 3− 1)

+
2G∗

3(
√
3 + 1)(

√
k + 3− 1)

,

where in (b) we use k + 3 ≥ 3 and
√
k + 3 + 1 ≥

√
3 + 1. The proof is thus

completed.

Lemma 8.9. There exists a constant T1 ≤
(
2C2

G∗ +1
)2−3, such that ∥gk+1∥2 ≥

G∗

2
,∀k ≥ T1.

Proof. Consider a specific k̃ with ∥gk̃+1∥2 < G∗

2
satisfied. In this case we

have

∥gk̃+1 −∇f(x
∗)∥2 ≥ ∥∇f(x∗)∥2 − ∥gk̃+1∥2 > G∗ − G∗

2
=

G∗

2
.

From Lemma 8.8, we have

G∗

2
< ∥gk̃+1 −∇f(x

∗)∥2 ≤
C2√

k̃ + 3− 1
.

From this inequality we can observe that ∥gk̃+1∥2 can be less than
√
G
2

only

when k̃ < T1 =
(
2C2

G∗ + 1
)2 − 3. Hence, this lemma is proven.

Lemma 8.10. Let T := max{T1, T2}, with T2 =
√

8LD
G∗ −3. When k ≥ T+1,

it is guaranteed that

∥vk+1 − v̂k+1∥2 ≤
δ3kLDC3

∥gk+1∥2∥gk∥2
≤ 4δ3kLDC3

(G∗)2
, (8.21)

where C3 := LD2 + DC2√
2−1

.

Proof. First we show that when k ≥ T +1, both ∥gk∥2 > 0 and ∥ĝk+1∥2 > 0.

First, because k ≥ T + 1 ≥ T1 + 1, through Lemma 8.9 we have ∥gk∥2 ≥
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G∗

2
> 0. Then we have

∥∥ĝk+1

∥∥
2
=
∥∥(1− δk)gk + δk∇f(xk+1)− δk∇f(xk+1) + δk∇f(yk)

∥∥
2

≥
∥∥gk+1

∥∥
2
− δk

∥∥∇f(xk+1)−∇f(yk)
∥∥
2
≥ G∗

2
− δ2kLD.

The last inequality holds when k ≥ T1. Hence when k ≥ max{T1, T2} + 1,

we must have both ∥gk∥2 > 0 and ∥ĝk+1∥2 > 0. Then for any k ≥ T + 1, in

view of (8.6), we can write

∥vk+1 − v̂k+1∥2 =
∥∥∥∥− R

∥gk+1∥2
gk+1 +

R

∥ĝk+1∥2
ĝk+1

∥∥∥∥
2

(8.22)

=
R

∥gk+1∥2∥ĝk+1∥2

∥∥∥∥∥∥ĝk+1

∥∥
2
gk+1 −

∥∥gk+1

∥∥
2
ĝk+1

∥∥∥∥
2

=
R

∥gk+1∥2∥ĝk+1∥2

×
∥∥∥∥∥∥ĝk+1

∥∥
2
gk+1 −

∥∥ĝk+1

∥∥
2
ĝk+1 +

∥∥ĝk+1

∥∥
2
ĝk+1 −

∥∥gk+1

∥∥
2
ĝk+1

∥∥∥∥
2

≤ R

∥gk+1∥2
×
∥∥∥∥gk+1 − ĝk+1

∥∥∥∥
2

+
R

∥gk+1∥2

∣∣∣∣∥∥ĝk+1

∥∥
2
−
∥∥gk+1

∥∥
2

∣∣∣∣
(a)

≤ 2R

∥gk+1∥2

∥∥∥∥gk+1 − ĝk+1

∥∥∥∥
2

=
2Rδk
∥gk+1∥2

∥∥∥∥∇f(xk+1)−∇f(yk)

∥∥∥∥
2

(b)

≤ 2RLδk
∥gk+1∥2

∥∥∥∥xk+1 − yk

∥∥∥∥
2

=
DLδ2k
∥gk+1∥2

∥∥∥∥v̂k+1 − vk

∥∥∥∥
2

,

where (a) is by
∣∣∥a∥2 − ∥b∥2∣∣ ≤ ∥∥a − b

∥∥
2
; and (b) is by Assumption 7.1.

Then we will bound ∥v̂k+1 − vk∥2.

∥∥v̂k+1 − vk

∥∥
2
=

∥∥∥∥− R

∥ĝk+1∥2
ĝk+1 +

R

∥gk∥2
gk

∥∥∥∥
2

=
R

∥gk∥2∥ĝk+1∥2

×
∥∥∥∥∥∥gk

∥∥
2
ĝk+1 −

∥∥ĝk+1

∥∥
2
ĝk+1 +

∥∥ĝk+1

∥∥
2
ĝk+1 −

∥∥ĝk+1

∥∥
2
gk

∥∥∥∥
2

≤ R

∥gk∥2

∣∣∣∣∥∥gk

∥∥
2
−
∥∥ĝk+1

∥∥
2

∣∣∣∣+ R

∥gk∥2

∥∥∥∥ĝk+1 − gk

∥∥∥∥
2

(c)

≤ D

∥gk∥2

∥∥∥∥ĝk+1 − gk

∥∥∥∥
2

=
δkD

∥gk∥2

∥∥∥∥∇f(yk)− gk

∥∥∥∥
2
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≤ δkD

∥gk∥2
∥∥∇f(yk)−∇f(x∗)

∥∥
2
+

δkD

∥gk∥2
∥∥∇f(x∗)− gk

∥∥
2

≤ δkLD
2

∥gk∥2
+

δkD

∥gk∥2
∥∥∇f(x∗)− gk

∥∥
2

≤ δkLD
2

∥gk∥2
+

δkD

∥gk∥2
C2√

k + 2− 1
≤

δk
(
LD2 + DC2√

T+3−1

)
∥gk∥2

:=
δkC3

∥gk∥2
,

where (c) again uses
∣∣∥a∥2 − ∥b|2∣∣ ≤ ∥∥a − b

∥∥
2
, and the last inequality is

because of Lemma 8.6. Plugging back to (8.22), we arrive at

∥vk+1 − v̂k+1∥2 ≤
DLδ2k
∥gk+1∥2

δkC3

∥gk∥2
=

δ3kLDC3

∥gk+1∥2∥gk∥2
≤ 4δ3kLDC3

(G∗)2
.

The proof is thus completed.

Lemma 8.11. Let ξ0 = 0 and T defined the same as in Lemma 8.10. Denote

Φ∗
k := Φk(vk) as the minimum value of Φk(x) over X , then we have

f(xk) ≤ Φ∗
k + ξk,∀k ≥ 0,

where for k < T +1, ξk+1 = (1− δk)ξk+
3LD2

2
δ2k, and ξk+1 = C4δ

4
k+(1− δk)ξk

for k ≥ T + 1 with C4 =
(

C1√
T+4

+G∗
)

4LDC3

(G∗)2
.

Proof. The proof for k < T + 1 is similar as that in Lemma 8.4, hence it is

omitted here. We mainly focus on the case where k ≥ T + 1.

Φ∗
k+1 = Φk+1(vk+1)

= (1− δk)Φk(vk+1) + δk

[
f(xk+1) +

〈
∇f(xk+1),vk+1 − xk+1

〉]
(a)

≥ (1− δk)Φk(vk) + δk

[
f(xk+1) +

〈
∇f(xk+1),vk+1 − xk+1

〉]
≥ (1− δk)f(xk) + δk

[
f(xk+1) +

〈
∇f(xk+1),vk+1 − xk+1

〉]
− (1− δk)ξk

= f(xk+1) + (1− δk)
[
f(xk)− f(xk+1)

]
+ δk

〈
∇f(xk+1),vk+1 − xk+1

〉
− (1− δk)ξk

(b)

≥ f(xk+1) + (1− δk)
〈
∇f(xk+1),xk − xk+1

〉
+ δk

〈
∇f(xk+1),vk+1 − xk+1

〉
− (1− δk)ξk
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= f(xk+1) + δk
〈
∇f(xk+1),vk+1 − v̂k+1

〉
− (1− δk)ξk

(c)

≥ f(xk+1)− δk∥∇f(xk+1)∥2∥vk+1 − v̂k+1∥2 − (1− δk)ξk
(d)

≥ f(xk+1)− ∥∇f(xk+1)∥2
4δ4kLDC3

(G∗)2
− (1− δk)ξk

(e)

≥ f(xk+1)−
( C1√

T + 4
+G∗

)4δ4kLDC3

(G∗)2
− (1− δk)ξk,

where (a) is because vk minimizes Φk(x) shown in Lemma 8.3; (b) is by

f(xk+1)−f(xk) ≤ ⟨∇f(xk+1),xk+1−xk⟩; (c) uses Cauchy-Schwarz inequality;
(d) uses Lemma 8.10, and (e) uses the following inequality.

∥∇f(xk+1)∥2 = ∥∇f(xk+1)−∇f(x∗) +∇f(x∗)∥2
≤ ∥∇f(xk+1)−∇f(x∗)∥2 + ∥∇f(x∗)∥2

≤ C1√
k + 3

+G∗ ≤ C1√
T + 4

+G∗,

where the last line uses Lemma 8.6.

Proof of Theorem 8.2

Proof. Let T be defined the same as in Lemma 8.9. For convenience denote

ξk+1 = (1−δk)ξk+θk. When k < T+1, we have θk =
3LD2

2
δ2k; when k ≥ T+1,

we have θk = C4δ
4
k.

Then we can write

ξk+1 = (1− δk)ξk + θk =
k∑

τ=0

θτ

k∏
j=τ+1

(1− δj)

=
k∑

τ=0

θτ
(τ + 2)(τ + 3)

(k + 2)(k + 3)

=
T∑

τ=0

3LD2

2
δ2τ
(τ + 2)(τ + 3)

(k + 2)(k + 3)
+

k∑
τ=T+1

C4δ
4
τ

(τ + 2)(τ + 3)

(k + 2)(k + 3)

=
6LD2(T + 1)

(k + 2)(k + 3)
+O

(
C4

k3

)
. (8.23)

Again note that T < O
(
max{

√
LD
G
, L

2D2

G2 }
)
is a constant independent of
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k. Finally, applying Lemma 8.1, we have

f(xk)− f(x∗) ≤
2
[
f(x0)− f(x∗)

]
(k + 1)(k + 2)

+ ξk. (8.24)

Plugging the expression of ξk, i.e., (8.23), into (8.24) completes the proof.

8.6 Discussions for Other Constraints

8.6.1 ℓ1 norm ball

In this section we focus on the convergence of ExtraFW for ℓ1 norm ball

constraint under the assumption that argmaxj
∣∣[∇f(x∗)]j

∣∣ has cardinality 1

(which is also known as strict complementarity [246], and it naturally implies

that the constraint is active). Note that in this case Lemma 8.7 still holds,

hence the value of ∇f(x∗) is unique regardless the uniqueness of x∗. This

assumption directly leads to argmaxj
∣∣[∇f(x∗)]j

∣∣ − |[∇f(x∗)]i| ≥ λ,∀i for

some λ > 0.

The closed-form solution of vk+1 is given in (8.7). The constants required

in the proof are summarized below for clearance. The norm considered in this

section for defining L and D is ∥·∥1; that is, ∥∇f(x)−∇f(y)∥∞ ≤ L∥x−y∥1,
and ∥x−y∥1 ≤ D, ∀x,∀y ∈ X̃ . Using equivalences of norms, we also assume

∥∇f(x)−∇f(y)∥2 ≤ L2∥x−y∥2, ∀x,y ∈ X̃ , and ∥x−y∥2 ≤ D2,∀x,∀y ∈ X .

Lemma 8.12. There exists a constant T (which is irreverent with k), when-

ever k ≥ T , it is guaranteed to have

∥vk+1 − v̂k+1∥1 = 0.

Proof. In the proof, we denote i = argmaxj |[∇f(x∗)]j| for convenience.

With ∥∇f(x∗)∥2 = G∗, Lemma 8.8 still holds.

We first show that there exists T1 = (3C2

λ
+ 1)2 − 3, such that for all

k ≥ T1, we have argmaxj |[gk+1]j| = i, which further implies only the i-th

entry of vk+1 is non-zero. Since Lemma 8.8 holds, one can see whenever

k ≥ T1, it is guaranteed to have ∥gk+1 − ∇f(x∗)∥2 ≤ λ
3
. Therefore, one

must have
∣∣|[gk+1]j| − |[∇f(x∗)]j|

∣∣ ≤ λ
3
,∀j. Then it is easy to see that

|[gk+1]i| − |[gk+1]j| ≥ λ
3
,∀j. Hence, we have argmaxj |[gk+1]j| = i.
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Next we show that there exists another constant T = max{T1, (
3C5

λ
)2− 3},

such that argmaxj |[ĝk+1]j| = i,∀k ≥ T , which further indicates only the i-th

entry of v̂k+1 is non-zero. In this case, in view of Lemma 8.8, we have

∥∥ĝk+1 −∇f(x∗)
∥∥
2

=
∥∥(1− δk)gk + δk∇f(xk+1)− δk∇f(xk+1) + δk∇f(yk)−∇f(x∗)

∥∥
2

≤
∥∥gk+1 −∇f(x∗)∥2 + δk∥∇f(xk+1)−∇f(yk)

∥∥
2

≤
∥∥gk+1 −∇f(x∗)∥2 + δ2kL2D2

≤ C2√
k + 3− 1

+
4L2D2

(k + 3)2
≤ C5√

k + 3− 1
,∀k ≥ T1,

where C5 ≤ C2 +
4L2D2

(
√
T1+3−1)3

.

Hence whenever k ≥ max{T1, (
3C5

λ
+ 1)2 − 3}, it is guaranteed to have

∥ĝk+1 −∇f(x∗)∥2 ≤ λ
3
. Therefore, one must have

∣∣|[ĝk+1]j| − |[∇f(x∗)]j|
∣∣ ≤

λ
3
,∀j. It is thus straightforward to see that |[ĝk+1]i|−|[ĝk+1]j| ≥ λ

3
,∀j. Hence,

it is clear that argmaxj |[ĝk+1]j| = i.

Then one can see that when k ≥ T , we have vk+1 − v̂k+1 = 0.

Next, we modify Lemma 8.11 to cope with the ℓ1 norm ball constraint.

Lemma 8.13. Let ξ0 = 0 and T be the same as in Lemma 8.12. Denote

Φ∗
k := Φk(vk) as the minimum value of Φk(x) over X , then we have

f(xk) ≤ Φk(vk) = Φ∗
k + ξk,∀k ≥ 0,

where for k < T , ξk+1 = (1−δk)ξk+
3LD2

2
δ2k, and ξk+1 = (1−δk)ξk for k ≥ T .

Proof. The proof for k < T is similar as that in Lemma 8.4, hence it is

omitted here. We mainly focus on the case where k ≥ T . Using similar

argument as in Lemma 8.11, we have

Φ∗
k+1 ≥ f(xk+1) + δk

〈
∇f(xk+1),vk+1 − v̂k+1

〉
− (1− δk)ξk

= f(xk+1)− (1− δk)ξk,

where the last inequality is because of Lemma 8.12.

Theorem 8.3. Consider X is an ℓ1 norm ball. If argmaxj
∣∣[∇f(x∗)]j

∣∣ has
cardinality 1, and Assumptions 7.1 - 7.3 are satisfied, ExtraFW guarantees
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Figure 8.5: ExtraFW guarantees an O( 1
k2
) rate on simplex.

that

f(xk)− f(x∗) = O
( 1

k2

)
.

Proof. Let T be defined the same as in Lemma 8.12. For convenience, denote

ξk+1 = (1− δk)ξk + θk. When k < T , we have θk = 3LD2

2
δ2k; when k ≥ T , we

have θk = 0. Then we can write

ξk+1 = (1− δk)ξk + θk =
k∑

τ=0

θτ

k∏
j=τ+1

(1− δj) =
k∑

τ=0

θτ
(τ + 2)(τ + 3)

(k + 2)(k + 3)

=
T−1∑
τ=0

3LD2

2
δ2τ
(τ + 2)(τ + 3)

(k + 2)(k + 3)
=

6LD2T

(k + 2)(k + 3)
. (8.25)

Finally, applying Lemma 8.1, we have

f(xk)− f(x∗) ≤
2
[
f(x0)− f(x∗)

]
(k + 1)(k + 2)

+ ξk. (8.26)

Plugging the expression of ξk, i.e., (8.25) into (8.26) completes the proof.

Beyond ℓ1 norm ball. The O( T
k2
) rate in Theorem 8.3 can be generalized

in a straightforward manner to simplex, that is, X := {x|x ≥ 0, ⟨1,x⟩ =
R} for some R > 0. A minor assumption needed is that the cardinality

of argminj[∇f(x∗)]j is 1. In this case, the FW steps in ExtraFW admit

closed-form solutions. Again taking vk+1 as an example, we have vk+1 =

[0, . . . , 0, R, 0, . . . , 0], where the only non-zero is the i = argminj[gk+1]j-th

entry. The proof is similar to the ℓ1 norm ball case, i.e., first show that both

gk+1 and ĝk+1 converge to ∇f(x∗) so that vk+1 = v̂k+1,∀k ≥ T , where T
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is some constant depending on the difference of the smallest and the second

smallest entry of ∇f(x∗). Then one can follow similar steps of Lemma 8.13

to obtain the O( T
k2
) rate. Numerical evidences using logistic regression as

objective function can be found in Fig. 8.5. Note that in this case however,

FW itself converges fast enough.

8.6.2 n-support norm ball

When X is an n-support norm ball, ExtraFW guarantees that f(xk) −
f(x∗) = O

(
T
k2

)
. The proof is just a combination of Theorem 8.2 and 8.3:

therefore, we highlight the general idea rather than repeat the proofs step by

step.

The norm considered in this section for defining L and D is ∥ · ∥2, that is,
∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2, ∀x,y ∈ X̃ , and ∥x− y∥2 ≤ D, ∀x,y ∈ X .
Besides Assumptions 7.1 - 7.3, the extra regularity condition we need is that

the n-th largest entry of |[∇f(x∗)]| is strictly larger than the (n+1)-th largest

entry of |[∇f(x∗)]| by λ. Note that this condition is similar to what we used

for the ℓ1 norm ball constraint. In addition, this extra assumption directly

implies ∥∇f(x∗)∥2 := G∗ > 0. In the proof one may find the constant

G∗
n := ∥topn(∇f(x∗))∥2 helpful. Clearly, G∗ ≥ G∗

n ≥
√

n
d
G∗.

Theorem 8.4. Consider X is an n-support norm ball. If the n-th largest en-

try of |[∇f(x∗)]| is strictly larger than the (n+1)-th largest entry of |[∇f(x∗)]|
and Assumptions 7.1 - 7.3 are satisfied, ExtraFW guarantees that there exists

a constant T such that

f(xk)− f(x∗) = O
( T
k2

)
.

Proof. First by using the regularity condition and similar arguments of Lemma

8.12, one can show that there exists a constant T1 (depending on λ, L, D,

and G) such that the indices of the non-zero entries of vk+1 and v̂k+1 are the

same for all k ≥ T1.

Next, using similar arguments of Lemma 8.9, one can show that there

exists a constant T̃2 such that ∥topn(gk+1)∥2 ≥ G∗
n

2
.

Let T2 = max{T̃2, T1}. It is clear that for any k ≥ T2, the indices of non-

zero entries of vk+1 and v̂k+1 are the same. Together with ∥topn(gk+1)∥2 ≥
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G∗
n

2
,∀k ≥ T2, we can show that for any k ≥ T2 + 1, ∥vk+1 − v̂k+1∥2 = O(δ3k)

holds through similar steps as Lemma 8.10.

Finally, using similar arguments of Lemma 8.11 with the aid of ∥vk+1 −
v̂k+1∥2 = O(δ3k), and applying Lemma 8.1, we can obtain f(xk) − f(x∗) =

O
(
T2

k2

)
.

8.7 Additional Numerical Results

8.7.1 Efficiency of ExtraFW: Case Study of n-support Norm
Ball

In this section we show that ExtraFW achieves fast convergence rate and low

iteration cost simultaneously when the constraint set is an n-support norm

ball. We compare algorithms that can solve the constrained formulation or

its equivalent regularized formulation discussed in Section 8.2.3, that is

min
x

f(x) + λ(∥x∥n−sp)
2 (8.27a)

⇔ min
x

f(x) s.t. ∥x∥n−sp ≤ R, (8.27b)

where ∥ · ∥n−sp denotes the n-support norm [244].

Clearly, one can apply proximal NAG (Prox-NAG) to (8.27a). The proxi-

mal operator per iteration has complexity O(d(n+ log d)) [244].

One can also apply ExtraFW for (8.27b). From the Lagrangian duality of

(8.27b) and (8.27a), one can see that if λ ̸= 0, one must have an optimal

solution for (8.27b) lies on the boundary of its constraint set. Hence ExtraFW

achieves acceleration in this case. Below we summarize the convergence rate

and per iteration cost of different algorithms. A simple comparison among

different algorithms illustrates the efficiency of ExtraFW.

Table 8.1: A comparison of different algorithms for logistic regression with
n-support norm

Algorithm convergence rate per iteration cost
Prox-NAG for (8.27a) O(1/k2) proximal operator: O(d(n+ log d))

Projected NAG for (8.27b) O(1/k2) projection is expensive
FW for (8.27b) O(1/k) FW step: O(d logn)

ExtraFW for (8.27b) O(T/k2) FW step: O(d logn)
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8.7.2 Binary Classification

Table 8.2: A summary of datasets used in numerical experiments

Dataset d N (train) nonzeros
w7a 300 24, 692 3.89%

realsim 20, 958 50, 617 0.24%
news20 19, 996 1, 355, 191 0.033%

mushromm 122 8, 124 18.75%
mnist (digit 4) 784 60, 000 12.4%

The datasets used for the experiments are summarized in Table 8.2.

Sparsity promoting property of FW variants in ℓ1 norm ball con-

straint. FW in Algorithm 8.1 directly promotes sparsity on the solution if it

is initialized at x0 = 0. To see this, suppose that the i-th entry of ∇f(xk) has

the largest absolute value, then we have vk+1 = [0, . . . ,−sgn
(
[∇f(xk)]i

)
R, . . . , 0]⊤

with the i-th entry being non-zero. Hence, xk has at most k non-zero entries

given k − 1 entries are non-zero in xk−1. This sparsity promoting property

also holds for ExtraFW.

The experiment accuracy of different algorithms can be found in Fig. 8.6.

Additional numerical results for ℓ1 norm ball constraint can be found in

Fig. 8.7. It can be seen that on dataset realsim, ExtraFW has similar

performance with AFW, both outperforming FW significantly. On dataset

news20, ExtraFW outperforms AFW in terms of optimality error.

Additional experiments for n-support norm ball constraint are listed in

Fig. 8.8. The optimality error of ExtraFW is smaller than AFW on both

realsim and news20.

8.7.3 Matrix Completion

Besides the projection-free property, FW and its variants are more suit-

able for problem (8.10) compared to GD/NAG because they also guarantee

rank(Xk) ≤ k + 1 [143, 142]. Take FW in Algorithm 8.1 for example. First

it is clear that ∇f(Xk) = (Xk −A)K. Suppose the SVD of ∇f(Xk) is given

by ∇f(Xk) = PkΣkQ
⊤
k . Then the FW step can be solved easily by

Vk+1 = −Rpkq
⊤
k , (8.28)
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Figure 8.6: Experiment accuracy of ExtraFW on different constraints.

where pk and qk denote the left and right singular vectors corresponding to

the largest singular value of ∇f(Xk), respectively. Clearly Vk+1 in (8.28) has

rank at most 1. Hence it is easy to see that Xk+1 = (1− δk)Xk + δkVk+1 has

rank at most k+2 if Xk is a rank-(k+1) matrix (i.e., X0 has rank 1). Using

similar arguments, ExtraFW also ensures rank(Xk) ≤ k + 1. Therefore,

the low rank structure is directly promoted by FW variants, and a faster

convergence in this case implies a guaranteed lower rank Xk.

The dataset used for the experiment isMovieLens100K, where 1682 movies

are rated by 943 users with 6.30% percent ratings observed. The initialization

and data processing are the same as those used in [142].
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Figure 8.7: Additional experiments of ExtraFW for classification with X
being an ℓ1 norm ball.
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Figure 8.8: Additional experiments of ExtraFW for classification with X
being an n-support norm ball.
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CHAPTER 9

CONCLUSION

Chapter 3 proposes a robust DF framework with backtest-based bootstrap

and adaptive residual selection. It can efficiently extend an arbitrary PF

model to generate DF, is robust to the choice of model, and outperforms a

variety of benchmark DF methods on real-world data, making the proposed

framework well-suited for industrial applications.

Chapter 2 addresses the ENSO region spatio-temporal sequence predic-

tion problem by proposing a modified ConvGRU network, as well as its

downstream task of predicting the Niño 3.4 index. The ConvGRU network

incorporated 2-D convolutional layers within a ConvGRU cell and employed

an encoder-decoder Seq2Seq structure, offering advantages over existing mod-

els such as LR, LIMs, CNN, KAF, and Seq2Seq with GRU. These advan-

tages include the ability to output future SST maps of the ENSO region,

rather than ENSO indices, and modelling approximate nonlinear dynamics.

Through experiments on various climate and atmospheric reanalysis datasets,

we demonstrated the effectiveness of the ConvGRU network in predicting fu-

ture SST maps in the ENSO region. The ConvGRU network outperformed

existing models in various scenarios, including the Niño 3.4 index prediction,

showcasing its capabilities in downstream applications. We also evaluated

the performance of the network in predicting other climate-related tasks,

such as predicting monthly air temperature over a large portion of the global

surface, which further demonstrate its potential for accurate spatio-temporal

sequence predictions.

In Chapter 4, we introduces two actively adaptive algorithms for piecewise-

stationary cascading bandit, namely GLRT-CascadeUCB and GLRT-CascadeK-

L-UCB. It is analytically established that GLRT-CascadeUCB and

GLRT-CascadeKL-UCB achieve the same nearly optimal regret upper bound

on the order of O
(√

NLT log T
)
, which matches our minimax regret lower

bound up to a
√
log T factor. Compared with existing algorithms that adopt
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passively adaptive approach such as CascadeSWUCB and CascadeDUCB, our

new regret upper bounds are reduced by O(
√
L) and O(

√
L log T ) respec-

tively. Numerical tests on both synthetic and real-world data show the im-

proved efficiency of the proposed algorithms.

Chapter 5 introduces a new MAB formulation – adversarial graphical

contextual bandits – which leverage both contexts and side observations.

Two efficient algorithms, EXP3-LGC-U and EXP3-LGC-IX, are proposed, with

EXP3-LGC-IX for a special class of problems and EXP3-LGC-U for more gen-

eral cases. Under mild assumptions, it is analytically demonstrated that the

proposed algorithms achieve the regret Õ(
√

α(G)dT ) for both directed and

undirected graph settings.

In Chapter 6, we study the joint community detection and phase synchro-

nization problem from an MLE perspective and provide the new insight that

its MLE formulation has a multi-frequency nature. We then propose two

methods, the spectral method based on the novel MF-CPQR factorization

and the iterative MF-GPM, to tackle the MLE formulation of the joint esti-

mation problem, where the latter one requires the initialization from spectral

methods. Numerical experiments demonstrate the advantage of our proposed

algorithms against existing algorithms.

Almost tune-free SVRG and SARAH were developed in Chapter 7. Besides

the BB step size for eliminating the tuning for step size, the key insights are

that both i) averaging, as well as ii) the number of inner loop iterations should

be adjusted according to the BB step size. Specific major findings include: i)

estimate sequence based provably linear convergence of SVRG and SARAH,

which enabled new types of averaging for efficient variance reduction; ii)

theoretical guarantees of BB-SVRG and BB-SARAH with different types of

averaging; and iii) implementable tune-free variance reduction algorithms.

The efficacy of the tune-free BB-SVRG and BB-SARAH were corroborated

numerically.

A parameter-free FW variant, ExtraFW, is introduced and analyzed in

Chapter 8. ExtraFW leverages two gradient evaluations per iteration to

update in a PC manner. We show that ExtraFW converges at O( 1
k
) on

general problems, while achieving a faster rate O(TLD2

k2
) on certain types

of constraint sets including active ℓ1, ℓ2, and n-support norm balls. Given

the possibility of acceleration, ExtraFW is thus a competitive alternative

to FW. The efficiency of ExtraFW is validated on tasks such as i) binary
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classification with different constraints, where ExtraFW can be even faster

than NAG, and ii) matrix completion where ExtraFW finds solutions with

lower optimality error and rank rapidly.
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novel method for machine learning problems using stochastic recursive
gradient,” in International conference on machine learning. PMLR,
2017, pp. 2613–2621.
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