Robust Nonparametric Distribution Forecast with Backtest-based Bootstrap and Adaptive Residual Selection

Presenter: Longshaokan (Marshall) Wang, longsha@amazon.com

Authors: Longshaokan Wang, Lingda Wang, Mina Georgieva, Paulo Machado, Abinaya Ulagappa, Safwan Ahmed, Yan Lu, Arjun Bakshi, Farhad Ghassemi

04-19-22

Amazon

IEEE ICASSP 2022

Outline

Introduction

- Method
- Experiments
- Summary

Motivation

- Planners and optimization systems often require distribution forecast
 - Product manufacturing
 - Inventory Allocation
- Quantifying uncertainty associated with point forecast
- **Goal**: Develop accurate and efficient method for generating distribution forecast at scale

Summary

- Proposed a flexible plug-and-play framework that can extend an arbitrary Point Forecast model to produce Distribution Forecast
- Extended bootstrapping predictive residuals with backtest and covariate sampling
- Proposed an adaptive residual selector
- Proposed a new formula for applying bootstrapped residuals
- Empirical evaluation on real-world data

Summary

- The proposed Distribution Forecast framework has the following advantages:
 - Incorporates different sources of forecast uncertainty by design
 - Integrates well with an arbitrary PF model to produce DF
 - Is robust to model misspecification
 - Has negligible inference time latency
 - Retains interpretability for model diagnostics
 - State-of-the-art (SOTA) performance on internal and public datasets
 - Can provide more accurate point forecast through Bagging

Outline

- Introduction
- Method
- Experiments
- Summary

Overview

amazon

Backtesting

Backtesting (cont.)

Residual Selection

Residual Selection (cont.)

- Heuristics-based residual selection:
 - time series ID: $g(\mathcal{E}, \mathcal{M}, \mathcal{M}_{future}) = \{ \varepsilon_{l,j}^t \in \mathcal{E} \mid l = i \}$ for time series *i*
 - time gap: $g(\mathcal{E}, \mathcal{M}, \mathcal{M}_{future}) = \{ \varepsilon_{l,j}^t \in \mathcal{E} \mid t j = k_i \}$
 - PF magnitude: $g(\mathcal{E}, \mathcal{M}, \mathcal{M}_{\text{future}}) = \{ \varepsilon_{l,j}^t \in \mathcal{E} \mid \widehat{Y}_{l,j}^t \in (\widehat{Y}_i^{d_i + k_i} \cdot \frac{1}{\lambda}, \widehat{Y}_i^{d_i + k_i} \cdot \lambda) \}$
 - discount ratio, price...
- Algorithm-based residual selection:
 - dCor + threshold search + Kolmogorov-Smirnov test
 - Fit a model to predict residuals from meta information

Bootstrapping

Bootstrapping (cont.)

Motivation behind Backtest-Multi.

- First obtain point forecast $\widehat{Y}_i^{d_i+1} = \widehat{f}(Y_i^{s_i:d_i}, \mathbf{X}_i^{s_i:d_i}, \mathbf{X}_i^{d_i+1})$ sales $\bigwedge_{i=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum$
- For $b = 1, 2, \ldots, B$, draw $\varepsilon_b \in \mathcal{G}$
- Generate 1-step bootstrap forecast:
 - Backtest-Additive:

$$\widehat{Y}_{i,b,\text{Add.}}^{d_i+1} = \widehat{Y}_i^{d_i+1} + \varepsilon_b$$

• Backtest-Multiplicative:

$$r_b = \varepsilon_b / \widehat{Y}_b$$

$$\widehat{Y}_{i,b,\text{Multi.}}^{d_i+1} = \widehat{Y}_i^{d_i+1} \cdot (1+r_b) = \widehat{Y}_i^{d_i+1} + \widehat{Y}_i^{d_i+1} / \widehat{Y}_b \cdot \varepsilon_b$$

Practical Considerations

- Backtest and residual selection steps can be efficiently parallelized
- Negligible inference latency to obtain distribution forecast given point forecast
- Can generate quantile forecast for arbitrary quantiles w/o retraining
- Retains interpretability for model diagnostics

Outline

- Introduction
- Method
- Experiments
- Summary

Setup

- Data:
 - Sales data from Amazon.com
 - Between 01/01/2017 and 01/10/2021
 - 76 products
 - 147 covariates capturing information on pricing, supply constraints, trend, seasonality, special events, and product attributes
 - M4-hourly competition data (Makridakis 2018)
- 100-fold backtest for evaluation, separate from backtest for computing residuals
- Evaluation metric: Absolute Coverage Error (ACE):

$$CO(\mathcal{D}_{\text{test}};\tau) = \frac{1}{|\mathcal{D}_{\text{test}}|} \sum_{\mathcal{D}_{\text{test}}} I\{Y_i^t \le \widehat{Y}_{i(\tau)}^t\}$$
$$ACE(\mathcal{D}_{\text{test}};\tau) = |CO(\mathcal{D}_{\text{test}};\tau) - \tau|$$

• Results averaged across backtest folds, 24-week/48-hour horizon for Sales/M4 data, 10 seeds for deep learning models, and target quantiles 0.1, 0.2, ..., 0.9.

amazon

Comparison Against Classic Bootstrap Approaches

 Compare the proposed Backtest-Additive (BA) and Backtest-Multiplicative (BM) with bootstrap with fitted residuals (FR) (<u>Hyndman 2018</u>) and boostrap with fitted models (FM) (<u>Pan 2016</u>).

Table 1: ACE comparison of different bootstrap DF approaches in-tegrated with different PF models.

Bootstrap\P	F Ridge	SVR	RF	NN
FR	0.102(-0%)	0.195(-0%)	0.207(-0%)	0.176(-0%)
FM	0.095(-7%)	0.218(+12%)	0.171(-17%)	0.125(-29%)
BA	0.069(-32%)	0.065(-67%)	0.055(-73%)	0.077(-56%)
BM	0.038 (-63%)	0.061(-69%)	0.027(-87%)	0.048(-73%)

Comparison Against SOTA Approaches

 Compare the proposed bootstrap methods with SOTA approaches including Quantile Lasso, Quantile Gradient Boosting, DeepAR (<u>Salinas 2020</u>), Deep Factors (<u>Wang 2019</u>), MQ-CNN (<u>Wen 2017</u>), DSSM (<u>Rangapuram 2018</u>), and TFT (<u>Lim 2021</u>).

Table 2: ACE comparison of backtest-based bootstrap integratedwith the median forecast vs the default DF.

DF\Model	QLasso	QGB	DeepAR	DFact	MQCNN	DSSM	TFT
Default	0.188	0.119	0.102	0.098	0.092	0.136	0.067
Median + BA	0.114	0.078	0.100	0.067	0.078	0.124	0.058
Median + BM	0.039	0.036	0.104	0.070	0.071	0.112	0.060

Robustness Against Model Assumptions

Table 3: ACE comparison of backtest-based bootstrap integrated with the median forecast vs the default DF from DeepAR under different pre-specified output distributions.

DF\Output Dist.	Neg. Bin.	Student's t	t Normal	Gamma	Laplace	Poisson
Default	0.102	0.192	0.162	0.138	0.114	0.134
Median + BA	0.100	0.169	0.116	0.157	0.094	0.128
Median + BM	0.104	0.165	0.111	0.156	0.088	0.125

Improving Accuracy of Point Forecast via Bagging

Table 4: Relative change in MAPE for Bagging PF compared to the original PF.

Bootstrap\PF Model	Ridge	SVR	RF	NN
FR	+0.8%	+6.5%	+0.2%	+0.7%
FM	+0.4%	+6.6%	-3.8%	+2.6%
BA	-12.3%	-21.0%	-10.0%	+1.5%
BM	-22.1 %	-31.8 %	-5.3%	-13.4%

Outline

- Introduction
- Method
- Experiments
- Summary

Summary

- Proposed a Distribution Forecast framework with the following advantages:
 - Incorporates different sources of forecast uncertainty by design
 - Integrates well with an arbitrary PF model to produce DF
 - Is robust to model misspecification
 - Has negligible inference time latency
 - Retains interpretability for model diagnostics
 - State-of-the-art (SOTA) performance on internal and public datasets
 - Can provide more accurate point forecast through Bagging

Thank you! Iongsha@amazon.com