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ABSTRACT

Predicting sea surface temperature (SST) within the El Niño-Southern Oscillation (ENSO) region has been extensively studied
due to its significant influence on global temperature and precipitation patterns. Statistical models such as linear inverse model
(LIM), analog forecasting (AF), and recurrent neural network (RNN) have been widely used for ENSO prediction, offering
flexibility and relatively low computational expense compared to large dynamic models. However, these models have limitations
in capturing spatial patterns in SST variability or relying on linear dynamics. Here we present a modified Convolutional Gated
Recurrent Unit (ConvGRU) network for the ENSO region spatio-temporal sequence prediction problem, along with the Niño 3.4
index prediction as a down stream task. The proposed ConvGRU network, with an encoder-decoder sequence-to-sequence
structure, takes historical SST maps of the Pacific region as input and generates future SST maps for subsequent months
within the ENSO region. To evaluate the performance of the ConvGRU network, we trained and tested it using data from
multiple large climate models, including a pre-industrial simulation spanning approximately 1300 years from the Community
Climate System Model version 4 (CCSM4) and a 30-member historical hindcast ensemble during the years 1921-2100 using
the NOAA Seamless system for Prediction and EArth System Research (SPEAR) model. We also compare and contrast
the prediction skill of the ConvGRU network against existing models. The results demonstrate that the ConvGRU network
significantly improves the predictability of the Niño 3.4 index compared to LIM, AF, and RNN. This improvement is evidenced by
extended useful prediction range, higher Pearson correlation, and lower root-mean-square error. The proposed model holds
promise for improving our understanding and predicting capabilities of the ENSO phenomenon and can be broadly applicable
to other weather and climate prediction scenarios with spatial patterns and teleconnections.

Introduction
The El Niño-Southern Oscillation (ENSO) phenomenon over the tropical Pacific region is the most energetic driver of climate
variability on the seasonal to interannual timescales1. It plays a crucial role on global oceanic and atmospheric dynamics,
particularly during its irregular warming (El Niño) and cooling (La Niña) phases. The impacts of ENSO are widespread, leading
to anomalous temperature and precipitation patterns on a global scale2–4, as well as changing extreme and hazardous weather
conditions on a regional scale, such as winter to early spring tornado outbreaks in the United States5, tropical cyclone intensity
changes in northwestern Pacific6, and unusual fire weather in Australia7 and the United States8. Consequently, accurate
prediction of sea surface temperature (SST) maps within the ENSO region and its associated Niño indices—for instance, Niño
1+2, 3, 3.4, and 49–11—has become a critical area of research. Reliable ENSO prediction can provide valuable insights for
decision-making processes in various sectors, including government agencies, food and insurance industries, and transportation,
enabling them to prepare for the associated impacts12, 13.

Prediction models for SST maps within the ENSO region and the associated Niño indices can be broadly classified into
two types: dynamical models and statistical models. Dynamical models, such as the North American Multi-Model Ensemble
(NMME)14, are commonly used for seasonal ENSO prediction. However, these model ensembles are computationally intensive,
sensitive to initialization conditions, and expensive to run. In contrast, this study focuses on statistical models due to their
simplicity and comparable prediction skill to dynamical models. One widely used statistical ENSO prediction model is the
linear inverse model (LIM)15, 16, which employs principal components analysis and Markov prediction to approximate trends
and predict future states based on empirical orthogonal functions, similar to linear regression (LR)17. However, LIM fails
to capture nonlinear ENSO dynamics—for instance, surface-subsurface interactions and surface winds18—and can lead to
underestimation of ENSO variability. Another type of statistical prediction model is based on Lorenz’s analog forecasting



(AF)19. Initially, AF based models use observed or free-running model data as libraries of states. Predictions are then generated
by matching states in the library that are very similar to observed data at prediction initialization, and following the evolution
on these so-called analogs. Advantages of AF based models include avoiding expensive and unstable initialization systems and
reducing structural model error. The kernel analog forecasting (KAF) model17, 20, 21, as a generalization of conventional AF
based models, utilizes nonlinear kernels to better capture nonlinearity in ENSO dynamics. Recently, with the development of
deep learning techniques, the convolutional neural network (CNN)22 and long short-term memory (LSTM)23, 24 network have
been used for predicting Niño indices, but their prediction skills have not yet been extended to capturing spatial patterns in SST
variability within the ENSO region.

In this study, we propose the use of a Convolutional Gated Recurrent Unit (ConvGRU) network, inspired by and modified
from the original developments25–27, to predict SST maps within the ENSO region, along with the Niño 3.4 index as a
downstream task. The ConvGRU network has an encoder-decoder sequence-to-sequence (Seq2Seq) structure, with both the
encoder and the decoder consisting of multi-layer ConvGRU cells. The encoder compresses the input SST maps of the Pacific
region into hidden states across all layers, and the decoder unfolds the hidden states from the encoder to generate predictions
within the ENSO region. The ConvGRU cell, a key component of both the encoder and the decoder, incorporates several 2-D
convolutional layers. This architecture enables the ConvGRU network to take historical SST maps of the Pacific region as
inputs and generate future SST maps of the ENSO region for subsequent months, taking into consideration of spatio-temporal
correlation of the SST maps. Moreover, this architecture significantly reduces the number of network parameters while
accelerating the training process.

To evaluate the performance of the ConvGRU network, we conduct numerical experiments and compare it against existing
models, such as KAF, LIM, Seq2Seq with GRU, and LR, using global climate ensembles and atmospheric reanalysis datasets.
These datasets include two SST datasets and one surface air temperature dataset. The comparison results demonstrate that
the ConvGRU network achieves significant improvements over the other models in terms of useful prediction range, Pearson
correlation (PC), and root-mean-square error (RMSE).

By developing an improved prediction model that accurately captures the complex dynamics and spatial patterns of
SST within the ENSO region, this study aims to contribute to better understanding and prediction of ENSO-related climate
phenomena. Further research can explore further enhancements to the network architecture and investigate its applicability to
other climate-related features and prediction tasks.

The rest of this paper is organized as follows: In preliminaries, we provide an overview of the ENSO region prediction
problem and discuss existing models for spatio-temporal sequence prediction. In methodology, we present the ConvGRU
network, including the ConvGRU cells and the encoder-decoder Seq2Seq structure, and describe the training process. In results
and discussion, we discuss the performance of the ConvGRU network on the ENSO region spatio-temporal sequence prediction
task as well as its comparison with existing models.

Preliminaries

ENSO region prediction problem
We address the ENSO region prediction problems, which involves predicting future SST map sequences within the ENSO
region of the Pacific, given previously observed gridded SST maps of the Pacific region. Suppose that SST maps of the Pacific
region are sampled and averaged monthly on a grid of size M×N, representing an SST map of the Pacific region as a matrix
in RM×N for a specific month. As monthly records of SST maps of the Pacific region are accumulated, a sequence of such
matrices is obtained, X̃XX1, . . . , X̃XX t , . . .(∈RM×N), where t denotes a specific month. Given the previous J-month (referred to as the
condition range) observed SST maps of the Pacific region, including the current one, represented as X̃XX t−J+1:t ∈ RJ×M×N , the
ENSO region spatio-temporal sequence prediction problem at month t aims to predict the most likely K-month (referred to as
the prediction range) future SST maps within the ENSO region. These predicted maps are denoted as ŶYY t+1, . . . ,ŶYY t+K(∈RM×N),
abbreviated as ŶYY t+1:t+K ∈ RK×M×N . Formally, the problem can be stated as follows:

ŶYY t+1:t+K = argmax
YYY t+1:t+K

P
(
YYY t+1:t+K

∣∣ X̃XX t−J+1:t
)
. (1)

The extent of the ENSO region for the predicted maps can cover the entire Pacific region or any other region within the Pacific,
depending on the downstream task, for example, the south Pacific decadal oscillation28. In real-world applications, SST maps
of the Pacific region are typically sampled and averaged monthly on a latitude-longitude grid of a specific resolution, such as
1◦×1◦ per latitude-longitude grid cell, and the prediction range spans 12 and 24 months.

The ENSO region prediction problem encompasses a series of downstream tasks, such as predicting Niño indices. It holds
potential applications in other climate-related features such as fire weather and drought indices7, 29.
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Models for spatio-temporal sequence prediction
There exists a range of approaches for spatio-temporal sequence prediction, including machine learning and traditional statistical
models. We categorize these models into autoregressive models and statistical models, highlighting their applicability to
weather and climate related tasks.

Autoregressive models
Autoregressive models have found widespread usage in time series prediction problems, including recurrent neural networks
(RNNs) such as vanilla RNN30, LSTM23, and GRU31. One multivariate variant of general-purpose RNN, known as fully-
connected RNN (FC-RNN)25, 32, was among the earliest models employed for spatio-temporal sequence prediction. For
instance, FC-LSTM takes vectorized inputs (spatio maps) and utilizes LSTM cells. The main equations for FC-LSTM can be
summarized as follows:

it = σi(Wixxt +Wihht−1 +bi), • Input gate
ft = σ f (Wf xxt +Wf hht−1 +b f ), •Forget gate
ot = σo(Woxxt +Wohht−1 +bo), •Output gate
c̃t = σc̃(Wc̃xxt +Wc̃hht−1 +bc̃), •New memory cell
ct = ft ⊙ ct−1 + it ⊙ c̃t , •Final memory cell
ht = ot ⊙σh(ct), •Hidden state

where ⊙ represents the element-wise product (Hardmard product), and σ is either the sigmoid or tanh function.
However, FC-LSTM has limitations in efficiently capturing spatial correlations. To overcome this drawback, ConvLSTM25

was introduced, which incorporates 2-D convolutional layers within an LSTM cell. ConvLSTM has been further enhanced with
various variants and successors such as TrajGRU26, CDNA33, PredRNN34. Another approach to autoregressive models for
spatio-temporal sequence prediction is based on Transformers35, 36. Additionally, autoregressive models have been combined
with other techniques, such as graph neural networks37, 38 and generative models39, leading to significant achievements in short
to medium-range weather prediction and other spatio-temporal sequence prediction applications.

Statistical climate models
Statistical climate models employ statistical techniques tailored for climate-related data analysis and prediction. Examples
include LIM15, 16 and KAF17, 20, 21.

LIM assumes that the dynamics of a system can be described by a linear stochastic differential equation of the form:

dxxx
dt

= BBBxxx+ξ .

Here xxx(t) represents the state of the system at time t, BBB is a time-independent operator, and ξ is stationary white noise. For
stationary statistics, BBB must be dissipative, meaning that its eigenvalues have negative real parts, and

CCC(τ) = GGG(τ)CCC(0) and GGG(τ) = exp(BBBτ),

where CCC(0) and CCC(τ) are covariances of xxx at lags 0 and τ , respectively. In prediction problems, GGG(τ)xxx(t) represents the
best linear prediction of the state at time t + τ , given the state at time t. The matrices BBB and GGG can then be determined as
BBB = τ−1 ln(CCC(τ)C(0)−1).

KAF is a generalization of AF19, 40, incorporating both nonlinear kernel methods and operator-theoretic ergodic theory41.
By establishing a rigorous connection with Koopman operator theory42 for dynamical systems, KAF can generate statistically
optimal predictions as conditional expectations. KAF is particularly useful when dealing with noisy and partially observed data
during prediction initialization.

These models form the foundation for spatio-temporal sequence prediction and have been applied to various weather and
climate problems. However, we should notice that i) LIM is not capable of capturing nonlinear dynamics with the ENSO
region; ii) KAF is usually applied to Niño index prediction task, and is not capable of predicting the spatial pattern within the
ENSO region. Those limitations of statistical models motivate the proposal of the ConvGRU network in this study.

Methodology

We now propose our ConvGRU network, which is inspired by and modified from the ConvGRU model26, 27, for the ENSO region
spatio-temporal sequence prediction. The ConvGRU network incorporates 2-D convolutional layers in both input-to-(hidden)
state and (hidden) state-to-(hidden) state transitions within a ConvGRU cell. This modification offers several advantages over
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Figure 1. Illustration of 2-D convolutional layers within a ConvGRU cell. Convolutional layers are applied to update gate,
reset gate, and new memory cell (see Eq. (2)).

FC-GRU cells, efficiently capturing spatial correlations of SST maps and reducing the number of network parameters. The
ConvGRU network is composed of multiple stacked ConvGRU cells and follows an encoder-decoder Seq2Seq structure. During
the training process, samples are generated from fixed-length windows with different starting points.

Convolutional GRU cell
If we were to tackle the ENSO region spatio-temporal sequence prediction problem in Eq. (1) using a network built with
FC-GRU cells, we would need to vectorize inputs and hidden states before performing matrix multiplication. These steps
are essentially equivalent to fully connected layers in a neural network. However, the vectorization and matrix multiplication
steps are not required when using ConvGRU cells. Instead, a ConvGRU cell employs 2-D convolutional layers, which offers
several advantages, including extracting meaningful spatial correlation features, reducing the number of network parameters,
and speeding up the training process.

Following the structure of FC-GRU cells, the equations for the ConvGRU cell can be expressed as follows:

zt = σz(WWW zx ∗ IIIt +WWW zh ∗HHHt−1 +bz), •Update gate
rt = σr(WWW rx ∗ IIIt +WWW rh ∗HHHt−1 +br), •Reset gate

H̃HHt = σh̃(WWW h̃x ∗ IIIt +WWW h̃rh ∗ (rt ⊙HHHt−1)+bh̃), •New memory cell

HHHt = (1− zt)⊙ H̃HHt + zt ⊙HHHt−1, •Hidden state

(2)

where ∗ represents the convolution operator. Here, input IIIt , hidden state HHHt , update gate zt , reset gate rt , and new memory
cell H̃HHt are all 3D tensors, with the last two dimensions representing the spatial dimensions (rows and columns). Figure 1
illustrates the application of 2-D convolutional layers within a ConvGRU cell for both the input-to-(hidden) state and (hidden)
state-to-(hidden) state transitions. This allows the future hidden state in a specific grid cell to extract relevant information
locally from its neighboring inputs and past hidden states. The size of the neighbors considered by a grid cell is determined by
the size of the convolutional kernel. A large kernel is recommended for fast-evolving spatio-temporal sequences, while a small
kernel is more suitable for slow-varying sequences.

Encoder-Decoder Seq2Seq structure
We utilize the ConvGRU cells in Eq. (2) as a key component to construct our ConvGRU network for ENSO region spatio-
temporal sequence prediction. We recognize this as a Seq2Seq learning problem (see Eq. (1)) that can be effectively addressed
using the encoder-decoder Seq2Seq structure31, 43.

Figure 2 illustrates the architecture of the ConvGRU network for a 3-layer example, although the number of layers can be
adjusted based on performance considerations, such as RMSE. The ConvGRU network consists of two main parts: multi-layer
encoder and multi-layer decoder.

The encoder, depicted in Figure 2a, utilizes ConvGRU cells and 2-D convolutional layers. Each layer’s hidden states are
initialized as an all 0-tensor and updated using inputs and the previous hidden states, following Eq. (2). The first layer takes
SST maps of the Pacific region as inputs, while the subsequent layers receive the output hidden states from the previous layer.
Convolutional layers are applied before each ConvGRU cell, to adjust the number of the input channels and the size of the input
spatial dimensions, enhancing feature extraction.

The decoder, depicted in Figure 2b, consists of ConvGRU cells and 2-D deconvolutional layers. A crucial step that connects
the encoder and decoder is that the hidden states of each layer in the decoder is copied from the last output hidden states of the
corresponding layer in the encoder. The decoder architecture is similar to the encoder, but the flow direction of hidden states
among layers is reversed. This enables the adoption of 2-D deconvolutional layers, which are the reverse operation of 2-D
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Figure 2. Three-layer ConvGRU network, where the initial hidden states of the decoder are copied from the last hidden states
of the encoder. (a) Encoder architecture utilizing ConvGRU cells and 2-D convolutional layers. (b) Decoder architecture
constructed with ConvGRU cells and 2-D deconvolutional layer.

convolutional layer. They ensure that the inputs and network parameters in each decoder layer’s ConvGRU cells are consistent
with those in the encoder, so that the last output hidden states from the encoder can be utilized by the decoder. For the outputs
of the first layer of the decoder, the grid is cropped to the ENSO region.

The encoder-decoder Seq2Seq structure of the ConvGRU network can be interpreted as follows: the encoder compresses
the input SST maps of the Pacific region into hidden states across all layers, while the decoder unfolds the hidden states from
the encoder to generate predictions for the ENSO region. Consequently, the ConvGRU network approximates the problem
stated in Eq. (1):

ŶYY t+1:t+K = argmax
YYY t+1:t+K

P
(
YYY t+1:t+K

∣∣ X̃XX t−J+1:t
)

≈ argmax
YYY t+1:t+K

P
(
YYY t+1:t+K

∣∣ fENC
(
X̃XX t−J+1:t

∣∣WWW ENC
))

≈ gDEC
(

fENC
(
X̃XX t−J+1:t

∣∣WWW ENC
) ∣∣WWW DEC

)
,

(3)

where fENC(·|WWW ENC) and gDEC(·|WWW DEC) represent the encoder and decoder, respectively, with network parameters WWW ENC and
WWW DEC.
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Figure 3. Data setup for training and testing. The green vertical lines divide the entire dataset into the training data and the
testing data. The performance metric is evaluated to the right of the green line, and no data in this part is used in training. (a)
Data setup during the training process. The red lines depict the training windows of {(X̃XX t ,ỸYY t)}T

t=1, where the left part
represents the condition range (t − J+1 to t for some t), and the right part represents the prediction range (t +1 to t +K). Note
that all training windows are to the left of the green line. (b) During the testing process, the prediction range is strictly to the
right of the green line.

Training process
Given a training dataset consisting of SST maps, denoted as {(X̃XX t ,ỸYY t)}T

t=1, of the Pacific and ENSO regions, respectively, the
network parameters WWW ∗

ENC and WWW ∗
DEC of the encoder and decoder can be learned by minimizing the difference between the

predicted sequence ŶYY t+1:t+K and the ground truth sequence ỸYY t+1:t+K . The optimization process can be described as follows:

WWW ∗
ENC,WWW

∗
DEC = argmin

WWW ENC,WWW DEC

T−K

∑
t=J

L
(
ỸYY t+1:t+K ,gDEC

(
fENC

(
X̃XX t−J+1:t

∣∣WWW ENC
) ∣∣WWW DEC

))
= argmin

WWW ENC,WWW DEC

T−K

∑
t=J

L
(
ỸYY t+1:t+K ,ŶYY t+1:t+K

)
,

(4)

where the loss function L can be chosen, for instance, as the mean squared loss. The optimization problem in Eq. (4) can be
solved using stochastic gradient descent algorithms, such as Adam44 and Adagrad45.

During the training process, multiple training windows (instances) of length J+K are generated from the training dataset,
each with different start points. The condition (J) and prediction (K) ranges remain fixed for all training windows. For instance,
if the training dataset spans from month 1 to month 10000, training windows can be created with t in Eq. (4) ranging from J to
10000−K. Figure 3a illustrates the generation of training windows. Once the ConvGRU network is trained, it can be evaluated
on a testing dataset {(X̃XX t ,ỸYY t)}T+F

t=T+1, as depicted in Figure 3b.

Results and discussions
Experimental setup
Experiment results and discussions of the ConvGRU network on various global climate and atmospheric reanalysis datasets
are presented. The reanalysis datasets used consist of two SST datasets and one air temperature dataset. The performance
of the ConvGRU network is evaluated on the ENSO region spatio-temporal sequence prediction task for the SST datasets.
Additionally, the performance is compared with several existing models on a downstream task of predicting the Niño 3.4
index, which is calculated based on the aforementioned ENSO region spatio-temporal sequence prediction task. The ConvGRU
network is also evaluated on the spatio-temporal sequence prediction task for the air temperature dataset, which covers almost
2/3 of the global surface.

For the numerical experiments, the ConvGRU network is implemented using PyTorch46. The experiments are conducted on
a Linux server equipped with a single GPU, either NVIDIA GeForce GTX 1080Ti or NVIDIA RTX A6000. The implementation
codes of the ConvGRU network are publicly available, and more detailed information can be found in the data availability
section.

CCSM4 dataset
The CCSM4 dataset is a modeled SST dataset derived from a 1300-year, pre-industrial control integration of the Community
Climate System Model version 4 (CCSM4)47. The dataset is sampled and averaged monthly on the model’s native ocean grid
with a normal resolution of approximately 1◦×0.5◦ (longitude-latitude). The SST maps of the Pacific and ENSO regions are
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Figure 4. Performance on the ENSO region spatio-temporal sequence prediction task. (a): Sample ground truth of the ENSO
region starting from February 1120. (b): Sample prediction of the ENSO region starting from February 1120. (c): Sample
difference between the ground truth and prediction of the ENSO region start from February 1120. (d) RMSE per grid cell and
PC as a function of lead time computed in the testing period.

extracted from specific longitude-latitude boxes. The Pacific region covers 16◦E-56◦W and 69◦S-32◦N (256×256 grid), while
the ENSO region covers 170◦-120◦W and 5◦S-5◦N (45×38 grid). To reduce computational complexity and GPU memory
usage, the SST maps of the Pacific and ENSO regions are down-sampled to 64× 64 and 12× 10 grids, respectively. The
CCSM4 dataset is split into disjoint training and testing data periods, with years 1-1099 allocated for training and years
1100-1300 for testing.

For experiments on the CCSM4 dataset, a 3-layer ConvGRU network is implemented with parameters provided in the
NetParams.py in the ConvGRU_CCSM4 folder. The condition range (J) and the prediction range (K) are set to 48 and 24
months, respectively.

Figure 4 illustrates the performance of the ConvGRU network on the ENSO region spatio-temporal sequence prediction
task. Figures 4a, 4b and 4c include a sample comparison, starting from February 1120, between the ground truth and the
network’s prediction for the ENSO region. The patterns in both the ground truth and the prediction exhibit high similarity.
Figure 4d presents the prediction skill assessed using RMSE and PC metrics over the entire testing period as a function of
lead time. The RMSE values are averaged over all possible start points in the testing data split and grid cells of the ENSO
region. For PC, the ground truths and predictions are vectorized and concatenated over all possible start points in the testing
data split. The RMSE and PC results demonstrate the high correlation and low error characteristics of predictions generated by
the ConvGRU network.
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Figure 5. Performance of the ConvGRU network against other models on predicting the Niño 3.4 index in the CCSM4 dataset
during 1100-1300. (a) and (c) PC and RMSE, respectively, as a function of lead time, compared to KAF and LIM. (b) and (d)
PC and RMSE, respectively, as a function of lead time, compared to Seq2Seq with GRU and LR.

Next, the performance of the ConvGRU network is compared with existing models for predicting the Niño 3.4 index in
the CCSM4 dataset. Here Niño 3.4 indices mean SST anomalies relative to monthly climatology (average SST) of the ENSO
region. The models selected for comparison include KAF17, 20, 21, LIM15–17, Seq2Seq with GRU31, 43, and LR. KAF and LIM
utilize SST maps of the Pacific region as input (predictor) variables, while Seq2Seq with GRU and LR use mean SSTs of the
ENSO region. Seq2Seq with GRU is implemented using the DeepAR model48 from the GluonTS package49, with a 1-layer
GRU network with a 20-dimensional hidden state, and the condition and prediction ranges (J and K) the same as the ConvGRU
network. For LR, K = 24 separate models are trained for lead months 1-24, using J = 48 months lagged mean SSTs of the
ENSO region (including the current month) as input features.

Figure 5 illustrates the performance of the ConvGRU network compared against other models in predicting the Niño 3.4
index in the CCSM4 dataset over the testing period of 1100-1300, with the training period from 1 to 1099. A threshold of
PC = 0.6 is commonly used to differentiate useful from non-useful predictions17. The comparison demonstrates that although
the performance of the ConvGRU network deteriorates with longer lead times, it consistently outperforms the competing
models in terms of both PC and RMSE, particularly in the long-term prediction range. When considering the useful prediction
range using the PC threshold of 0.6, the ConvGRU network achieves the longest useful range of 18-19 months, surpassing
KAF, LIM, Seq2Seq with GRU, and LR by 3-4, 6-7, 10-11, and 10-11 months, respectively.

NOAA-GDFL-SPEAR dataset
The NOAA-GDFL-SPEAR dataset used in the numerical experiment is a simulated monthly averaged SST dataset with a
nominal resolution of 1◦×1◦ (longitude-latitude) from the GFDL SPEAR large ensembles. This includes 30-member ensembles
of climate change simulations covering the period 1921-2100 using the SPEAR-MED climate model50. The simulations
are forced with historical radiative forcings from 1921 to 2014 and SSP5-8.5 projected radiative forcings51, 52 from 2015 to
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Figure 6. Performance averaged over 30 ensembles of the ConvGRU network against other models on predicting the Niño 3.4
index in the NOAA-GDFL-SPEAR dataset during 2051-2100. (a) and (b) PC and RMSE, respectively, as a function of lead
time, compared to LIM, Seq2Seq with GRU, and LR.

2100. The SST maps of the Pacific and ENSO region are extracted from the longitude-latitude boxes 150◦E-82◦W, 69◦S-59◦N
(128×128 grid) and 170◦-120◦W, 5◦S-5◦N (50×10 grid), respectively. Similar to the previous comparison, the SST maps in
both regions are down-sampled to 64×64 and 25×5 grids, reducing computational complexity and GPU memory usage.

The NOAA-GDFL-SPEAR dataset in each ensemble is divided into disjoint training and testing data splits, with the training
period covering years 1921-2050 and the testing period covering years 2051-2100. For experiments on this dataset, a 3-layer
ConvGRU network is implemented using the parameters specified in the NetParams.py file in the ConvGRU_SPEAR folder.
The ConvGRU network is trained using data from all 30 ensembles that end on or before the year 2050, and then tested on data
from all 30 ensembles starting from the year 2051. The condition range (J) and the prediction range (K) are 48 and 24 months,
respectively.

Similar to the previous comparison, the performance of the ConvGRU network is compared to several existing models
for predicting the Niño 3.4 index in the NOAA-GDFL-SPEAR dataset. The selected models for comparison include LIM,
Seq2Seq with GRU, and LR. For LIM and LR, separate models are trained for each ensemble in the dataset, since the
NOAA-GDFL-SPEAR dataset contains data from 30 ensembles, and the metrics computed in the testing period are averaged
over all ensembles. Seq2Seq with GRU utilizes the DeepAR model to handle multiple time series with a single model, and the
detailed and fine-tuned settings remain the same in the CCSM4 dataset.

Figure 6 presents the performance averaged over 30 ensembles of the ConvGRU network compared against other models in
predicting the Niño 3.4 index in the NOAA-GDFL-SPEAR dataset over the testing period of 2051-2100, using the training
period of 1921-2051. The results of the experiments demonstrate that the ConvGRU network significantly outperforms the
competing models in terms of both PC and RMSE, with the longest useful range of 12 months, surpassing LIM, Seq2Seq with
GRU, and LR by 4-5, 4, and 7 months, respectively.

NOAA-CIRES air temperature dataset
The NOAA-CIRES air temperature dataset used in this experiment is a simulated monthly ensemble mean air temperature
dataset at the 2m level with a nominal resolution of approximately 2◦×2◦ (longitude-latitude). It is from the NOAA-CIRES
20th-Century Reanalysis Version 2c53, 54, which provides comprehensive global atmospheric circulation dataset spanning the
years 1850-2014. For the NOAA-CIRES air temperature dataset, we aim to demonstrate that the ConvGRU network is capable
of accurately predicting other climate and atmospheric spatio-temporal sequence beyond the ENSO region. For this experiment,
the target region is the longitude-latitude box 120◦E−1◦W, 60◦N−60◦S (128×64 grid), covering almost two-thirds of the
total global surface.

The NOAA-CIRES air temperature dataset is divided into disjoint training and testing periods, with the training period
covering the years 1851-1980 and testing period covering 1981-2014. In this experiment, a 3-layer ConvGRU network is
implemented using the parameters specified in the NetParams.py file in the AirTmp_M folder. The condition range (J) and
the prediction range (K) are set to 24 and 12 months, respectively.

Figure 7 illustrates the performance of the ConvGRU network on the air temperature spatio-temporal sequence prediction
task. Figures 7a, 7b, and 7c presents a sample comparison starting from January 1987 between the ground truth and the
prediction, revealing a very similar pattern in both the ground truth and the prediction. Figures 7d and 7e present the prediction
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Figure 7. Performance on the air temperature spatio-temporal sequence prediction task. (a) Sample ground truth starting from
January 1987. (b) Sample prediction starting from January 1987. (c) Sample difference between ground truth and prediction
starting from January 1987. (d) PC as a function of lead time computed in the testing period. (e) RMSE per grid cell as a
function of lead time computed in the testing period.

skill assessed using RMSE and PC, similar to Fig. 4, over the entire testing data split and as a function of lead time. The PC
result demonstrates a significantly high correlation of over 99% between the ground truth and the prediction within a prediction
range of 12 months. The RMSE ranges from approximately 1.1 °C to 1.2 °C.
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Conclusion
We addressed the ENSO region spatio-temporal sequence prediction problem by proposing a modified ConvGRU network, as
well as its downstream task of predicting the Niño 3.4 index. The ConvGRU network incorporated 2-D convolutional layers
within a ConvGRU cell and employed an encoder-decoder Seq2Seq structure, offering advantages over existing models such as
LR, LIMs, KAF, and Seq2Seq with GRU. These advantages include the ability to output future SST maps of the ENSO region,
rather than ENSO indices, and modelling approximate nonlinear dynamics.

Through experiments on various climate and atmospheric reanalysis datasets, we demonstrated the effectiveness of the
ConvGRU network in predicting future SST maps in the ENSO region. The ConvGRU network outperformed existing models
in various scenarios, including the Niño 3.4 index prediction, showcasing its capabilities in downstream applications. We also
evaluated the performance of the network in predicting other climate-related tasks, such as predicting monthly air temperature
over a large portion of the global surface, which further demonstrate its potential for accurate spatio-temporal sequence
predictions.

Overall, the proposed ConvGRU network offers a promising approach for ENSO region spatio-temporal sequence prediction
and hold potential for advancing climate and atmospheric prediction and related domains. There are opportunities for further
exploration, such as variants or successors of the ConvGRU network and leveraging Transformer-based models to enhance
prediction skills. Additionally, this study lays the foundation for constructing real-time forecast systems with monthly updates
based on the availability of observational data.

Data availability
The datasets generated and analyzed during this study are available from the corresponding author on reasonable request.
Additionally, the codes and detailed information about the datasets can be found at the following public GitHub repository:
https://github.com/LingdaWang/ConvGRU_ENSO_Forecast.
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