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Motivation

Multi-armed bandit (stochastic) can be defined by K different reward
distributions {f1, . . . , fk} associated with different arms.
Goal: Identify the best arm.
Performance metric:
Regret: R(T ) = T ∗ µ∗ − E[

∑T
i=1 µt ]. (convergence rate)

Sample Complexity: n(ε, δ). (final performance)
Application: Advert placement; Resource allocation; Dynamic pricing.
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Motivation

Many sequential decision making problems have combinatorial nature.
Network routing system optimization.

Goal: Minimize the expected total delay.
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Motivation

Top-m arm identification, consider advertise m products to the user.

Goal: Identify m most attractive products.
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Motivation

What if the reward distributions are non-stationary?

Network links might degrade over time.

User’s preference might change.
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Motivation

Many sequential decision making problems involve combinatorial
action, and are in general non-stationary.

Need a better model for quasi-stationary sequential decision making
problems. Existing models are either too optimistic or too pessimistic.

How good can we perform on this type of problem? Can we achieve
optimal performance?
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Piecewise-stationary combinatorial bandits

We study two variants of piecewise-stationary combinatorial bandits,
and develop efficient algorithms which achieve nearly order-optimal
regret upper bound.

Key idea of algorithm design is to balance uniform exploration and
UCB-type exploration.

By using randomized hard instance argument, we improve the
minimax regret lower bound for piecewise-stationary bandits.
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Learning Protocol of CMAB

For t = 1, . . . ,T

Based on the historical data, learner selects a superarm St ∈ F .

The reward of each base arm contained in the superarm is revealed to
the learner {Ri (t)|i ∈ St}, as well as the reward of the superarm
RSt (t).
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Piecewise-stationary CMAB: problem formulation

Piecewise-stationary CMAB = (K,F , T , {fk,t}k∈K,t∈T , rµt (St)).

K: set of base arms

F : set of super arms

T = {1, . . . ,T}: time horizon

{fk,t}k∈K,t∈T : collection of reward distributions of base arms
throughout the time

rµt (St): expected reward function

We assume reward distributions of base arms change in a piecewise
manner, let N = 1 +

∑T−1
t=1 I{∃k ∈ K s.t. fk,t 6= fk,t+1}.

Goal: identify good super arm at each time step to achieve small regret
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Piecewise-stationary CMAB: problem formulation

Assumption 1. (Monotoncity) Given two arbitrary mean vectors µ and
µ′, if µk ≥ µ′k , ∀k ∈ K, then rµ (S) ≥ rµ′ (S).
Assumption 2. [L-Lipschitz] Given two arbitrary mean vectors µ and µ′,
there exists an L <∞ such that

∣∣rµ (S)− rµ′ (S)
∣∣ ≤ L‖PS(µ− µ′)‖2,

∀S ∈ F .
We assume access to an α-approximation oracle Oracleα(µ). Given a
mean vector µ, Oracleα(µ) outputs an α-suboptimal super arm S such
that rµ (S) ≥ αmaxS∈F rµ (S).
Performance metric: Expected α-approximation cumulative regret

R(T ) = E

[
α

T∑
t=1

max
S∈F

rµt (S)−
T∑
t=1

rµt (St)

]
,
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One concrete example of the reward function

Consider top-m arm identification. In this case

rµt (St) =
∑
i∈St

ri (t)

which is the summation of rewards of all base arms contained in the super
arm. We can verify that in this case rµt is 1-Lipschitiz. The orcale can be
realized by any sorting algorithm. In general, rµt (·) can be nonlinear with
respect to the rewards of base arms.
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Piecewise-stationary CMAB: GLR change point detector

We use generalized likelihood (GLR) change point detector (Besson and
Kaufmann, 2019) to monitor the change of base arms’ reward distributions.
Algorithm 1: Sub-Bernoulli GLR Change-Point Detector:
GLR(X1, · · · ,Xn; δ)

Input: observations X1, . . . ,Xn and confidence level δ.
if sups∈[1,n−1] [s × kl(µ̂1:s , µ̂1:n) + (n− s)× kl(µ̂s+1:n, µ̂1:n)] ≥ β(n, δ)

then
Return True

end
else

Return False
end

Advantage: Almost parameter-free.
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Piecewise-stationary CMAB: GLR-CUCB algorithm

GLR-CUCB, runs in three phases:
1. For p fraction of the time, the algorithm play a superarm by uniform
exploration. For the rest of the time, we play the superarm according to
the α-approximation oracle (use UCB indices as input).
2. Once a superarm is played, the algorithm update the UCB indices of
all based arm contained in the superarm:

UCB(k)← 1
n`

∑nk
n=1 Zk,n +

√
3 log(t−τ)

2nk
.

3. At the end of each round, run GLR change-point detector on all base
arms contained in the played superarm. If at least one base arm has
changed, restart the UCB indices of all base arms.
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Piecwise-stationary CMAB: suboptimal gaps

The set of bad super arms with respect to the ith piecewise-stationary
segment is defined as:

S iB = {S |rµi (S) ≤ αmax
S̃∈F

rµi (S̃)}

The suboptimality gaps in the ith stationary segment are:

∆min,i
opt = αmax

S̃∈F
rµi (S̃)−max{rµi (S)|S ∈ S iB},

∆max,i
opt = αmax

S̃∈F
rµi (S̃)−min{rµi (S)|S ∈ S iB}.

Denote the largest gap at change-point νi as

∆i
change = max

k∈K

∣∣∣µi+1
k − µik

∣∣∣ ,∀1 ≤ i ≤ N − 1.
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Piecewise-stationary CMAB: regret upper bound

Assumption 3. Define di = di (p, δ) =

⌈
{4K/p

(
∆i

change

)2
}β(T , δ) + K

p

⌉
and assume νi − νi−1 ≥ 2 max{di , di−1}, ∀i = 1, . . . ,N − 1, where
νN − νN−1 ≥ 2dN−1.
Remark: The length of each piecewise-stationary segment is
Ω(
√
T logT ).

Theorem (Zhou et al. 2020)

The expected α-approximation cumulative regret of GLR-CUCB with
exploration probability p and confidence level δ satisfies

R(T ) ≤
N∑
i=1

C̃i + ∆max
opt Tp +

N−1∑
i=1

∆max,i+1
opt di + 3NT∆max

opt Kδ,

where C̃i =

(
6L2K 2 logT/

(
∆min,i

opt

)2
+ π2/6 + K

)
∆max,i

opt .
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Piecewise-stationary CMAB: proof sketch

High-level idea: Recursive regret decomposition.
Step 1: For stationary case, we have

R(T ) ≤ ∆max,1
opt TP(τ1 ≤ T )︸ ︷︷ ︸

false alarm

+ ∆max,1
opt Tp︸ ︷︷ ︸

uniform exploration

+ C̃1︸︷︷︸
UCB exploration

.

Step 2: Event decomposition.

𝑑"

𝑑"

𝜈"

𝜈" 𝜏"

𝜏"
good	event

bad	event

Define good events {C (i)}N−1
i=1

C(i) = {∀j ≤ i , τj ∈ {νj + 1, · · · , νj + dj}} , i ∈ [N − 1].
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Piecewise-stationary CMAB: proof sketch

Define Fi = {τi > νi} and Di = {τi ≤ νi + di}, ∀1 ≤ i ≤ N − 1. By
definition, C(i) = F1 ∩ D1 ∩ · · · ∩ Fi ∩ Di .
Step 3: Regret decomposition.
First decompose with respect to F1.

R(T ) = E [R(T )] = E [R(T )I{F1}] + E
[
R(T )I{F 1}

]
≤ E [R(T )I{F1}] + T∆max

opt P(F 1)

≤ E [R(ν1)I{F1}] + E [R(T − ν1)] + T∆max
opt Kδ

≤ C̃1 + ∆max,1
opt ν1p + E [R(T − ν1)] + T∆max

opt Kδ,

Then decompose E[R(T − ν1)] with respect to C(1). Repeat the above
procedure for C(2), . . . , C(N−1), we can obtain the desired bound.
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Piecewise-stationary CMAB: regret upper bound

Corollary (Zhou et al. 2020)

Let ∆min
change = mini∈[N−1] ∆i

change, we have

1 (N is known) Choosing δ = 1
T , p =

√
NK log T

T , gives

R(T ) = O
(

NK2 log T∆max
opt

(∆min
opt )

2 +
√
NKT log T∆max

opt

(∆min
change)

2

)
;

2 (N is unknown) Choosing δ = 1
T , p =

√
K log T

T , gives

R(T ) = O
(

NK2 log T∆max
opt

(∆min
opt )

2 +
N
√
KT log T∆max

opt

(∆min
change)

2

)
.
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Piecewise-stationary CMAB: minimax regret lower bound

Theorem (Zhou et al. 2020)

If K ≥ 3 and T ≥ M1N
(K−1)2

K , then the worst-case regret for any policy is
lower bounded by

R(T ) ≥ M2

√
NKT ,

where M1 = 1/ log 4
3 , M2 = 1/24

√
log 4

3 .

Proof sketch:
1. Construct randomized hard instance. µi

∗
i ∼ Bern( 1

2 + ε),
∀k ∈ K \ i∗, µki ∼ Bern( 1

2 ). (i + 1)∗|i∗ ∼ uniform(K \ i∗)
2. By change of measure technique, one can show that this ensemble of
hard instances incurs regret at least Ω(

√
NKT ).

3. There exists at least one instance incurs regret on the order of
Ω(
√
NTK ).
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Piecewise-statinoary CMAB: experimental results

Figure: Experiment on synthetic dataset. Left: reward distribution of base arms.
Right: expected accumulative regret.
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Piecewise-statinoary CMAB: experimental results

Figure: Yahoo! 1 experiment. Left: reward distribution of base arms. Right:
expected accumulative regret.

Huozhi Zhou (UIUC) Piecewise-Stationary Combinatorial Bandits Sep. 14 2020 29 / 49



Piecewise-statinoary CMAB: experimental results

Figure: Yahoo! 2 experiment. Left: reward distribution of base arms. Right:
expected accumulative regret.
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Piecewise-stationary CMAB: experimental results

CUCB CTS Hybrid DUCB GLR-CUCB

Synthetic Dataset 241.08 351.12 278.82 14.08 37.96

Yahoo! Experiment 1 510.20 513.41 826.01 25.44 62.76

Yahoo! Experiment 2 563.54 562.24 1189.17 158.27 517.13

Table: Standard deviations of all algorithms for experiments on synthetic and
Yahoo! datasets

LR-GLR-CUCB MUCB Oracle-CUCB

Synthetic Dataset 73.30 171.45 25.54

Yahoo! Experiment 1 63.37 202.44 35.08

Yahoo! Experiment 2 496.73 1427.28 160.76

Table: Standard deviations of all algorithms for experiments on synthetic and
Yahoo! datasets
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Learning protocal of cascading bandit

For t = 1, . . . ,T

Given historical data, the learner selects K out of L items to
recommend to the user.

The learner observes a partial feedback of his decision,
arg mink 1 ≤ k ≤ K : Zak,t , t = 1, the first item clicked by the user/no
click.
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Piecewise-stationary cascading bandit: problem formulation

Piecewise-stationary cascasding bandit (CB)=(L, T , {f`,t}`∈L,t∈T ,K ).

L: Ground set containing L items (e.g., web pages or advertisements).

T = {1, . . . ,T}: Set of time steps.

{f`,t}`∈L,t∈T : Pmfs of items in L at all time steps.

K : Number of items recommended by the learner to the user.

Learner receives partial feedback at time t, given by

Ft =

{
∅, if no click,

arg mink{1 ≤ k ≤ K : Zak,t ,t = 1}, otherwise.

Goal of learner: Identify top-K items with highest clicked probabilities.

R(T ) = E

[
T∑
t=1

R (At ,wt ,Zt)

]
,
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GLRT-CascadeUCB and GLRT-CascadeKL-UCB algorithms

GLRT-CascadeUCB and GLRT-CascadeKL-UCB algorithm run in three
phases:
1. For p fraction of the time, the algorithm select K items by uniform
sampling. For the rest of the time, the algorithm select K items with
highest UCB/KL-UCB indices.
2. Update the statistics of K selected items.

UCB(`) = ŵ(`) +

√
3 log(t − τ)

2n`
,

UCBKL(`) = max{q ∈ [ŵ(`), 1] : n` × KL(ŵ(`), q) ≤ g(t − τ)}.

3. At the end of each round, run GLR change-point detector on selected
items at this round. If at least one item’s click probability has changed,
restart the UCB indices/KL-UCB indices of all items.
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Piecewise-stationary cascading bandit: regret upper bound

Theorem (Wang et al. 2019)

GLRT-CascadeUCB guarantees

R(T ) ≤
N∑
i=1

C̃i︸ ︷︷ ︸
(a)

+ Tp︸︷︷︸
(b)

+
N−1∑
i=1

di︸ ︷︷ ︸
(c)

+ 3NTLδ︸ ︷︷ ︸
(d)

,

where C̃i =
∑L

`=K+1
12

∆i
si (`),si (K)

logT + π2

3 L.
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Piecewise-stationary cascading bandit: regret upper bound

Theorem (Wang et al. 2019)

GLRT-CascadeKL-UCB guarantees

R(T ) ≤ T (N − 1)(L + 1)δ︸ ︷︷ ︸
(a)

+ Tp︸︷︷︸
(b)

+
N−1∑
i=1

di︸ ︷︷ ︸
(c)

+NK log logT +
N−1∑
i=0

D̃i︸ ︷︷ ︸
(d)

,

where D̃i is a term depending on logT and the suboptimal gaps.
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Piecewise-stationary cascading bandit: regret upper bound

Corollary (Wang et al. 2019)

The regret of GLRT-CascadeUCB is established by choosing δ = 1
T and

p =
√

NL log T
T :

R(T ) = O

N(L− K ) logT

∆min
opt

+

√
NLT logT(
∆min

change

)2

 . (1)

Choosing the same δ and p , GLRT-CascadeKL-UCB has same order of
regret upper bound as (1).

remark: the order of the regret upper bound is the same as GLR-CUCB,
which implies that the dominant factor is the change in distribution.

Huozhi Zhou (UIUC) Piecewise-Stationary Combinatorial Bandits Sep. 14 2020 40 / 49



Outline

Motivation

Piecewise-stationary Combinatorial Semi-Bandits

Problem formulation
GLR change-point detector
GLR-CUCB algorithm
Regret upper bound
Minimax regret lower bound
Experimental results

Piecewise-stationary Cascading Bandits

Problem formulation
GLRT-CascadeUCB and GLRT-CascadeKL-UCB algorithms
Regret upper bound
Minimax regret lower bound
Experimental results

Huozhi Zhou (UIUC) Piecewise-Stationary Combinatorial Bandits Sep. 14 2020 41 / 49



Piecewise-stationary cascading bandit: minimax regret
lower bound

Theorem (Wang et al. 2019)

If L ≥ 3 and T ≥ MN (L−1)2

L , then for any policy, the worst-case regret is

at least Ω(
√
NLT ), where M = 1/ log 4

3 , and Ω(·) notation hides a
constant factor that is independent of N, L, and T .
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Piecewise-stationary cascading bandit: experimental results
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Figure: Synthetic experiment. Left: reward distributions. Right: cumulative
regret.
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Piecewise-stationary cascading bandit: experimental results
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Figure: Experiment on Yahoo! dataset. Left: reward distributions. Right:
cumulative regret.
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Piecewise-stationary cascading bandit: experimental results

Table: Means and standard deviations of the T -step regrets.

CascadeUCB1 CascadeKL-UCB CascadeDUCB

Synthetic Dataset 1069.77± 87.09 1053.25± 111.67 1180.30± 20.22
Yahoo! Experiment 2349.29± 312.71 2820.16± 256.74 3226.97± 39.37

CascadeSWUCB GLRT-CascadeUCB GLRT-CascadeKL-UCB

Synthetic Dataset 664.84± 29.81 527.93± 25.20 440.93± 45.54
Yahoo! Experiment 1519.56± 52.23 1235.21± 54.59 856.77± 67.16

Oracle-CascadeUCB1 Oracle-CascadeKL-UC

Synthetic Dataset 472.25± 17.65 353.86± 19.59
Yahoo! Experiment 1230.17± 45.24 808.84± 47.97
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Conclusion

We develop the first efficient algorithm for piecewise-stationary
combinatorial semi-bandits, GLR-CUCB, which achieves
O(
√
NKT logT ) regret.

We improve minimax regret lower bound (Ω(
√
NKT )) for

piecewise-stationary combinatorial semi-bandits, which indicates
GLR-CUCB is nearly order-optimal within poly-logarithm factors.

We develop better algorithms for piecewise-stationary cascading
bandits and tighten the minimax regret lower bound.

Future work includes design time-unaware algorithms for
piecewise-stationary bandits, incorporate contextual information, etc.
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