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Motivation

* Planners and optimization systems often require distribution forecast
e Product manufacturing

* Inventory Allocation
* Quantifying uncertainty associated with point forecast

* Goal: Develop accurate and efficient method for generating distribution forecast
at scale
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Summary

Proposed a flexible plug-and-play framework that can extend an arbitrary Point
Forecast model to produce Distribution Forecast

Extended bootstrapping predictive residuals with backtest and covariate sampling

Proposed an adaptive residual selector

Proposed a new formula for applying bootstrapped residuals

Empirical evaluation on real-world data
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Summary

* The proposed Distribution Forecast framework has the following advantages:

* Incorporates different sources of forecast uncertainty by design

Integrates well with an arbitrary PF model to produce DF

Is robust to model misspecification

Has negligible inference time latency

Retains interpretability for model diagnostics

State-of-the-art (SOTA) performance on internal and public datasets

Can provide more accurate point forecast through Bagging
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Overview
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Backtesting (cont.)
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Residual Selection
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Residual Selection (cont.)

* Heuristics-based residual selection:
« time series ID:  9(&, M, Miuure) = {ij € &l =1} fortime series |
* time gap: (5 M, Mfuture) — {51 €& ’ t—J=k; }
* PF magnitude:  g(£, M, Mupure) = {€} ; € 5|Y; (@50 L.
 discount ratio, price...

* Algorithm-based residual selection:
e dCor + threshold search + Kolmogorov-Smirnov test
* Fit a model to predict residuals from meta information
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Bootstrapping
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Bootstrapping (cont.)

Motivation behind Backtest-Multi.

* First obtain point forecast Y\ t1 = f(ysodi Xsidi X4ty sates ~ observedsales
—— Dackiest rorecas
and selected residuals G = §(&, M, M§T) — future forecast

*For b = 1,2,...,B,draw ¢, € G

* Generate 1-step bootstrap forecast:

* Backtest-Additive: s g By ¥ e §
b — Ay T &b é

* Backtest-Multiplicative:

’]"b — gb/?b time
yditl — _ pditl _ prditl | phitl o
b Mual, = Yi o (Lme) =Y AT/ g
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Practical Considerations

Backtest and residual selection steps can be efficiently parallelized

Negligible inference latency to obtain distribution forecast given point forecast

Can generate quantile forecast for arbitrary quantiles w/o retraining

Retains interpretability for model diagnostics
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Setup

* Data:

e Sales data from Amazon.com
e Between 01/01/2017 and 01/10/2021
e 76 products

e 147 covariates capturing information on pricing, supply constraints, trend, seasonality,
special events, and product attributes

e M4-hourly competition data (Makridakis 2018)

* 100-fold backtest for evaluation, separate from backtest for computing residuals
e Evaluation metric: Absolute Coverage Error (ACE):
CO(Deesi T) = oy Lom LYY < Vi)
ACE(Drest; 7) = |CO(Dyest; 7) — T

* Results averaged across backtest folds, 24-week/48-hour horizon for Sales/M4
data, 10 seeds for deep learning models, and target quantiles 0.1, 0.2, ..., 0.9. amazon


https://www.sciencedirect.com/science/article/abs/pii/S0169207018300785

Comparison Against Classic Bootstrap Approaches

 Compare the proposed Backtest-Additive (BA) and Backtest-Multiplicative (BM) with
bootstrap with fitted residuals (FR) (Hyndman 2018) and boostrap with fitted
models (FM) (Pan 2016).

Table 1: ACE comparison of different bootstrap DF approaches in-
tegrated with different PF models.

Bootstrap\PF Ridge SVR RF NN

FR 0.102(—0%) 0.195(—0%) 0.207(—0%) 0.176(—0%)
FM 0.095(—7%) 0.218(+12%) 0.171(—17%) 0.125(—29%)
BA 0.069(—32%) 0.065(—67%) 0.055(—73%) 0.077(—56%)
BM 0.038(—63%) 0.061(—69%) 0.027(—87%) 0.048(—73%)
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https://otexts.com/fpp2/aggregates.html
http://www.math.ucsd.edu/~politis/PAPER/BPIforARjspiFINAL.pdf

Comparison Against SOTA Approaches

 Compare the proposed bootstrap methods with SOTA approaches including
Quantile Lasso, Quantile Gradient Boosting, DeepAR (Salinas 2020), Deep Factors
(Wang 2019), MQ-CNN (Wen 2017), DSSM (Rangapuram 2018), and TFT (Lim 2021).

Table 2: ACE comparison of backtest-based bootstrap integrated
with the median forecast vs the default DF.

DF\Model  QLasso QGB [DeepAR DFact MQCNN DSSM TFT
Default 0.188 0.119] 0.102 0.098 0.092 0.136 0.067
Median + BA | 0.114 0.078| 0.100 0.067 0.078 0.124 0.058
Median + BM| 0.039 0.036| 0.104 0.070 0.071 0.112 0.060
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https://arxiv.org/pdf/1704.04110.pdf
https://arxiv.org/abs/1905.12417
https://arxiv.org/abs/1711.11053
https://papers.nips.cc/paper/2018/hash/5cf68969fb67aa6082363a6d4e6468e2-Abstract.html
https://www.sciencedirect.com/science/article/pii/S0169207021000637

Robustness Against Model Assumptions

Table 3. ACE comparison of backtest-based bootstrap integrated
with the median forecast vs the default DF from DeepAR under dif-
ferent pre-specified output distributions.

DF\Output Dist. Neg. Bin. Student’s t Normal Gamma Laplace Poisson
Default 0.102 0.192  0.162 0.138 0.114 0.134
Median + BA 0.100 0.169 0.116 0.157 0.094 0.128
Median + BM 0.104 0.165 0.111 0.156 0.088 0.125

amazon

20



Improving Accuracy of Point Forecast via Bagging

Table 4: Relative change in MAPE for Bagging PF compared to the

original PF.
Bootstrap\PF Model Ridge SVR RF NN
FR +0.8% +6.5% +0.2% +0.7%
FM +04% +6.6% —3.8% +2.6%
BA —12.3% —21.0% —10.0% +1.5%

BM —22.1% —-31.8% —5.3% —13.4%
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Summary

* Proposed a Distribution Forecast framework with the following advantages:

* Incorporates different sources of forecast uncertainty by design

Integrates well with an arbitrary PF model to produce DF

Is robust to model misspecification

Has negligible inference time latency

Retains interpretability for model diagnostics

State-of-the-art (SOTA) performance on internal and public datasets

Can provide more accurate point forecast through Bagging



Thank you!

longsha@amazon.com
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